
ROBUST ADAPTIVE BEAMFORMING

USING DATA DEPENDENT CONSTRAINTS

Kristine L. Bell, Yariv Ephraim, and Harry L. Van Trees

George Mason University, Fairfax, VA, 22030-4444, USA

ABSTRACT

An adaptive beamformer which is robust to uncertainty
in source DOA is derived. The beamformer is a weighted
sum of minimum variance distortionless response (MVDR)
beamformers pointed at a set of candidate DOAs, where
the relative contribution of each MVDR beamformer is de-
termined from a combination of observed data and prior
knowledge about the DOA. When SNR is high, the MVDR
beamformer whose look direction is closest to the source
dominates, and nearly optimal performance is obtained.
When SNR is low, the weighted combination of beamform-
ers has a wider main beam which is robust to DOA uncer-
tainty.

1. INTRODUCTION

Adaptive beamforming is a method for estimating a de-
sired signal impinging on an array of sensors. When the
direction-of-arrival (DOA) of the source is known, the mini-
mum variance distortionless response (MVDR) beamformer
[1] provides a distortionless version of the signal while sup-
pressing noise and interference. However, if there is a mis-
match between the source DOA and the look direction of
the beamformer, there can be signi�cant degradation in per-
formance, particularly at high signal-to-noise ratio (SNR)
[2].

Numerous methods have been proposed to improve ro-
bustness to pointing errors. Data driven approaches use
observed data to correct the constraint subspace to match
the actual subspace of the desired signal. This works well
when good subspace estimates can be obtained, i.e. for
high SNR and/or long observation time. However, there
can be signi�cant mismatch when reliable estimates cannot
be obtained. Data independent approaches such as linearly
constrained minumum variance (LCMV) beamforming re-
duce degradation by imposing additional linear constraints
[3] (see also [4] and the references therein). Robustness
to pointing error is achieved at the expense of sub-optimal
performance under ideal conditions.

We develop an adaptive beamformer which combines
the responsiveness of the data driven approach with the
robustness of the data independent approach. Like other
data driven beamformers, the proposed beamformer tends
to point in the direction of the desired signal when SNR
is high and DOA can be estimated reliably. When SNR is
low, the beampattern has wider main beam which is robust
to DOA uncertainty.

2. BACKGROUND

Consider the problem of estimating the waveform of a nar-
rowband planewave signal incident on an array of N sensors
from DOA �o in the presence of noise and interference. The
N � 1 vector of received signals is given by:

x(t) = a(�o)so(t) +

dX
i=1

a(�i)si(t) + n(t); (1)

where a(�i) is the N � 1 steering vector in the direction �i,
so(t) is the desired signal, si(t), i = 1; : : : ; d, are interference
signals, and n(t) is the N � 1 vector of additive noise.

The output of the beamformer is a linear estimate of
the desired signal, i.e.,

y(t) = w
H
x(t): (2)

In MVDR beamforming, the weights w are chosen to min-
imize the output power of the beamformer, E

�
jy(t)j2

	
,

while maintaining a distortionless response in the direction
of the desired signal. The weights are found from the solu-
tion to

min
w

w
H
Rxw subject to a(�)Hw = 1; (3)

where Rx is the data correlation matrix

Rx = E
�
x(t)x(t)H

	
: (4)

The MVDR weights are given by

wMV =
R
�1
x
a(�o)

a(�o)HR
�1
x a(�o)

: (5)

In practice, the data correlation matrix Rx is not known,
and the beamformer weights in (5) are implemented by sub-
stituting an estimate of Rx such as the sample correlation
matrix obtained from K snapshots of the data

R̂K =
1

K

KX
i=1

x(ti)x(ti)
H
: (6)

In minimum mean square error (MMSE) beamforming,
the mean square error betwen the desired signal and the
beamformer output, E

�
jy(t)� so(t)j

2
	
, is minimized. In

this case, the weights are given by the Wiener �lter,

wMS = R�1
x
a(�o)�

2
s (7)



where �2s = E
�
jso(t)j

2
	
is the desired signal power. Al-

though derived under di�erent considerations, the MMSE
weight vector (7) is just a scaled version of the MVDR
weight vector (5). In practice, the presumed DOA �s is
used in place of the true DOA �o, and Rx is replaced by
R̂K. If �

2
s is unknown, it must also be replaced by a suit-

able estimate. One method for estimating �2s is to use
the value of the MVDR spatial spectum estimate at �s,

�̂2s =
�
a(�s)

H
R̂
�1

K
a(�s)

�
�1
. In this case, the MMSE and

MVDR beamformers are identical and have the form

wMS = wMV =
R̂
�1

K
a(�s)

a(�s)HR̂
�1

K
a(�s)

: (8)

The MVDR beamformer can su�er signi�cant perfor-
mance degradation when the steering direction �s is not
the same as the source DOA �o. This is because the beam-
former preserves all energy in the one dimensional steering
vector subspace, and minimizes the remaining energy in
the N�1 dimensional orthogonal subspace. When the true
DOA of the signal does not match the steering vector, only
the portion of the signal which is in the constraint subspace
is preserved. The remaining portion acts like interference,
and the beamformer attempts to minimize it along with the
rest of the noise and interference.

Numerous techniques have been proposed for improving
pointing accuracy. In the maximum energy approach [1],
the MVDR beamformer is scanned over the range of pos-
sible DOAs, and the weights which maximize the output
power are chosen. This is equivalent to using the MVDR
direction �nding (DF) algorithm to estimate �̂s, and then
substituting the estimated DOA for the look direction. In
general, other DF techniques can also be used to estimate
the DOA. This technique works well when the observed data
is su�cient to yield a good DOA estimate. However, if the
DOA estimate is poor, the beamformer will not necessarily
point to the desired signal, and the mismatch can even be
worse than when using the presumed steering vector �s.

Eigenspace (ES) beamformers [6] correct the presumed
steering vector by projecting it onto an estimated signal
plus interference subspace. Letting ÊS+I denote the sig-
nal plus interference eigenvectors of R̂K , the resulting con-
straint vector is as = ÊS+IÊ

H

S+Ia(�s). Like the DF ap-
proach, this method works well when good estimates of the
signal plus interference subspace can be obtained, but per-
forms poorly otherwise.

In the more conservative and robust approach of LCMV
beamforming, additional constraints of the form C

H
w = f

are added to protect the signal over a wider range of DOAs.
The LCMV weights are given by

w = R
�1
x
C
�
C
H
R
�1
x
C
�
�1
f (9)

where C is the N � P matrix of constraint vectors and f
is the P � 1 vector of constraint values. Many types of
constraints have been proposed in the context of LCMV
beamforming. Some examples are directional constraints,
derivative constraints, eigenvector constraints, and quies-
cent pattern constraints. The additional constraints pro-
tect the desired signal but reduce the adaptive degrees of
freedom used for noise and interference suppression. As a

consequence, degradation due to mismatch is greatly re-
duced at the expense of sub-optimal performance under
ideal conditions. Quadratic constraints, which are equiv-
alent to arti�cial noise injection, also reduce sensitivity [5].

3. BAYESIAN BEAMFORMER

In this paper, an adaptive beamformer which is robust to
uncertainty in source DOA is derived using a Bayesian ap-
proach similar to [7]. We assume that � is a random param-
eter with a priori probability density function (pdf) p(�),
which re
ects the level of uncertainty in the source DOA.
For computational simplicity, it is assumed that p(�) is de-
�ned only on a discrete set of M points, � = f�1 � � � �Mg,
in the a priori parameter space. Let xL denote L snap-
shots of the received data vector taken at times t1; : : : ; tL.
The MMSE estimate of the desired signal is the conditional
mean of so(t) given xL,

y(t) = E fso(t)jxLg = E fE fso(t)jxL; �gg (10)

=

MX
i=1

p(�ijxL)E fso(t)jxL; �ig ; (11)

where p(�ijxL) is the a posteriori pdf of � given the obser-
vations,

p(�ijxL) =
p(�i)p(xLj�i)P
M

k=1
p(�k)p(xLj�k)

: (12)

When the desired signal and observations are jointly
Gaussian given �, the conditional mean E fso(t)jxL; �ig is
the output of the MMSE beamformer (7) pointed at �i.
Under these assumptions, (11) becomes

y(t) =

MX
i=1

p(�ijxL)w
H

MS(�i)x(t): (13)

As in the known DOA case, we substitute R̂K for Rx, and

at each �i, �̂
2
s(�i) =

�
a(�i)

H
R̂
�1

K
a(�i)

�
�1
. The beamformer

weights are then a linear combination of MVDR beamform-
ers, weighted by the a posteriori pdf.

Under the Gaussian assumption, p(xLj�i) is a Gaussian
density with zero mean and covariance Rx(�i) given by

Rx(�i) = �2sa(�i)a(�i)
H +Rn; (14)

where Rn is the interference plus noise correlation matrix.
When there are no interferers Rn = �2nI, and the a poste-
riori pdf has the form

p(�ijxL) =
p(�i) exp

�
�La(�i)

H
R̂La(�i)

	
P

P

k=1
p(�k) exp

�
�La(�k)HR̂La(�k)

	 : (15)

where R̂L is the sample correlation matrix of xL and � is
a monotonically increasing function of SNR (�2s=�

2
n). The

denominator in (15) is a normalization constant and the nu-
merator is a monotonic function of the conventional beam-
former spatial spectrum estimate a(�i)

H
R̂La(�i). At high

SNR it will tend to have a peak near the source DOA, and
at low SNR it will be relatively 
at over all DOAs. As a con-
sequence, p(�ijxL) will have the same behavior, magni�ed



by the exponential function. When SNR is high, the a pos-
teriori pdf will be sharply peaked near the true DOA, and
the Bayesian beamformer will reduce to an MVDR beam-
former pointed to the �i closest to the true DOA �s. When
SNR is low, the a posteriori pdf will revert to the a priori
pdf, and the beampattern will have a wide mainbeam over
the a priori parameter space. This case was studied in [8].

When interferers are present, p(�ijxL) is a function of
Rn, which is not known. Rather than try to approximate
the a posteriori pdf, we use the intuition gained from the
white noise case to de�ne a data dependent weighting func-
tion q(�jxL) as follows:

q(�ijxL) = �p(�i) exp
n
�L

�
a(�i)

H
R̂
�1

L
a(�i)

�
�1
o
; (16)

where � is a normalization constant. The form of q(�ijxL)
is the same as (15), with the MVDR spatial spectrum es-

timate a(�i)
H
R̂
�1

K
a(�i) replacing the conventional beam-

former spatial spectrum estimate. This weighting function
provides better performance than (15) when interferers are
present. In (15) � was a function of the SNR, which is not
usually known, but � can be viewed as a variable which
may be adjusted to tune the responsiveness of beamformer
to the source SNR, just as the number of snapshots L can
be chosen to tune temporal responsiveness. Note that the
number of snapshots, K, used in estimating R̂K and the
number of snapshots, L, used in calculating q(�ijxL) need
not be the same. The beamformer is updated in two steps.
First the weighting function is found from (16), then the
weights are calculated from

wB =

MX
i=1

q(�ijxL)wMV (�i): (17)

4. EXAMPLE

In Figures 1-4, typical performance of the proposed Bayesian
beamformer is compared to an LCMV beamformer using
quiescent pattern constraints [9], a DF-based beamformer,
and an eigenspace beamformer. The array is a uniform lin-
ear array (ULA) with half-wavelength spacing and N = 20
elements. The a priori uncertainty in the DOA is over the
region u = sin(�) 2 [�0:2;0:2]. For an 20-element array,
this interval is twice the null-to-null beamwidth of the con-
ventional beampattern. For the LCMV beamformer, a total
of 5 constraints were used. The DF beamformer used the
MUSIC algorithm for DOA estimation. In the Bayesian
beamformer, the set � is composed of M = 33 evenly
spaced points on the interval [�0:2;0:2]. In all of the beam-
formers, arti�cial noise injection at a level of 0 dB was used
for improved sidelobe control.

Performance is compared for a scenario with a desired
source from DOA us = 0:14, and two uncorrelated interfer-
ers with DOAs ui1 = �0:5 and ui2 = 0:6. The interference
to noise ratio (INR) was 20 dB. For the desired signal, a
high SNR (0 dB) and low SNR (-20 dB) case are shown.

Figures 1 and 3 show the weighting function q(uijxL)
and typical beampatterns for a single trial in the two cases,
and Figures 2 and 4 show a histogram of array gain for the
di�erent beamformers obtained from 500 trials. In the high

SNR case, q(uijxL) is sharply peaked near the true DOA.
The Bayesian beamformer, as well as the DF and ES beam-
formers all point to the source while nulling the interference.
The ES beamformer is somewhat superior in both sidelobe
control and array gain. The array gain for all three beam-
formers is relatively stable over all trials and close to the
optimal value of 36 dB. The LCMV beamformer has a lower
array gain, close to 30 dB. At low SNR, q(uijxL) is nearly
constant, implying that the observations provide little in-
formation about the source DOA. As a consequence, neither
the source DOA nor the signal plus interference subspace
can be accurately estimated. The DF beamformer does not
always point at the desired signal, and the ES beamformer
has a random pattern. The histogram of array gain values
for the DF-based beamformer shows that the DOA esti-
mate is accurate enough to provide optimal performance
only about half of the time, and can be so inaccurate as to
reduce array gain to as low as 0 dB. The ES beamformer
has even worse performance. Our Bayesian beamformer is
now more robust, with a wide beam covering the entire a
priori interval. The array gain is stable near 30 dB, which
is about the same as the LCMV processor.

5. REFERENCES

[1] J. Capon,\High-Resolution Frequency-Wavenumber
Spectrum Analysis", Proc. IEEE, vol. 57, pp. 1408-
1418, August 1969.

[2] H. Cox, \Resolving Power and Sensitivity to Mismatch
of Optimum Array Processors", J. Acoust. Soc. Amer.,
vol. 54, pp. 771-785, Sept. 1973.

[3] A. H. Booker, C. Y. Ong, J. P. Burg, and G. D. Hair,
\Multiple-Constraint Adaptive Filtering", Texas In-
struments Sci. Services Div., Dallas, Texas, April 1969.

[4] B. D. Van Veen and K. M. Buckley, \Beamforming: A
Versatile Approach to Spatial Filtering", IEEE ASSP

Mag., pp. 4-24, April 1988.

[5] E. N. Gilbert and S. P. Morgan, \Optimum Design of
Directive Antenna Arrays Subject to Random Varia-
tions", Bell Syst. Tech. Journal, vol. 34, pp. 637-663,
May 1955.

[6] A. M. Haimovich and Y. Bar-Ness, \Adaptive Antenna
Arrays Using Eigenvector methods", in Proc. of IEEE

ICASSP., 1988.

[7] D. T. Magill, \Optimal Adaptive Estimation of Sam-
pled Stochastic Processes", IEEE Trans. Automat.

Contr., vol. 10, pp. 434-439, October 1965.

[8] K. L. Bell, Y. Ephraim, and H. L. Van Trees, \Robust
Adaptive Beamforming Under Uncertainty in Source
Direction-of-Arrival", in Proc. of 8th IEEE Wkshp.

Stat. Sig. Array Proc., (Corfu, Greece), June 1996.

[9] C. Y. Tseng and L. J. Gri�ths, \A Uni�ed Approach
to the Design of Linear Constraints in Minimum Vari-
ance Adaptive Beamformers" IEEE Trans. Antennas

Propagat., vol. 40, pp. 1533-1542, December 1992.



−1 −0.5 0 0.5 1
0

0.5

1
q

Bayes.
LCMV  
DF    
ES    

−1 −0.5 0 0.5 1
−40

−30

−20

−10

0

10

20

u

Beampatterns

u_s u_i2u_i1

Figure 1: p(u) and beampatterns of adaptive beamformers
for N=20 element ULA. The desired signal is at us = 0.14
with SNR = 0 dB and the interferers are at ui1 = -0.5 and
ui2 = 0.6 with INR = 20 dB. A priori interval = [-0.2,0.2].
Number of snapshots K = L = 100:
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Figure 2: Histogram of array gain for beamformers from
500 trials for SNR = 0 dB.
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Figure 3: Same as Figure 1 with SNR = -20 dB.
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Figure 4: Same as Figure 2 with SNR = -20 dB.


