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Abstract

We consider the problem of localizing multiple

narrow-band stationary signals using an arbitrary

time-varying array such as an array mounted on a

moving platform. We assume a Gaussian stochas-

tic model for the received signals and employ the

Generalized Least Squares (GLS) estimator to get

an asymptotically-e�cient estimation of the model

parameters. In case the signals are a-priori known

to be uncorrelated, this estimator allows to exploit

this prior knowledge to its bene�t. For the im-

portant case of translational motion of a rigid ar-

ray, a computationally-e�cient spatial-smoothing

method is presented. Simulation results con�rming

the theoretical results are included.

1 Introduction

Most of the work on the problem of direction-

�nding by sensor arrays addressed the case of time-

invariant arrays, namely, arrays whose elements are

�xed in space. In contrast, in this paper we address

the case where the array is time-varying, i.e., its el-

ements move in space in some arbitrary but known

way. A typical example is an array mounted on a

moving platform.

Time-varying arrays have recently been discussed

by several authors. In [1], the Doppler e�ect was

used to decorrelate coherent signals. In [2], a sonar

system is analyzed consisting of a �xed non-moving

linear subarray and an additional towed subarray.

In [3], a computationally-e�cient Maximum Like-

lihood Estimator (MLE) is derived for the single-

source case, and the capability of spatially-sparse

time-varying arrays to cope with ambiguity errors is

demonstrated. In [4], two computationally-e�cient

estimation techniques are suggested for multiple

sources, based on array interpolation and on focus-

ing matrices. In [5], a deterministic-signals model

is employed and its corresponding MLE analyzed.

In this paper we present an asymptotically-

e�cient estimator based on the Generalized Least

Squares (GLS) criterion. This estimator approx-

imates the MLE for the large-sample case but is

computationally much simpler. In case the sig-

nals are a-priori known to be uncorrelated, it al-

lows to exploit this prior knowledge and get bet-

ter performance. Also, for the special case of a

translational motion of a rigid array we present a

spatial-smoothing method that is a generalization

of the method presented in [6], and is similar to

the method used in [1], which allows application of

computationally-e�cient eigenstructure algorithms

such as MUSIC [7], to the time-varying case. Both

techniques can also handle the important case of

coherent signals arising, for instance, in specular

multipath propagation. It should also be remarked

that the number of sources that can be handled by

the GLS estimator is not necessarily limited by the

number of sensors.

2 Problem Formulation

Consider q wave-fronts impinging from locations

�1; : : : ; �q on a time-varying array consisting of
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p sensors. For simplicity assume that the sen-

sors and the sources are all located on the same

plane and that the sources are in the far-�eld of

the array, so that f�kg represent the Directions-

Of-Arrival (DOAs). Assume also that the sources

emit narrow-band signals all centered around a

common frequency. Let sk(�) denote the com-

plex envelope of the k-th source signal measured

at time � at some �xed reference point, and let

x(�) = (x1(�); x2(�); : : : ; xp(�))
T denote the vec-

tor of complex envelopes formed from the signals

received by the sensors, with T denoting transposi-

tion. In the presence of additive noise, this received

vector can be expressed as:

x(�) =

qX
k=1

a(�; �k)sk(�) + n(�) (1)

where n(�) is the complex envelope of the noise,

and where a(�; �) is the array's steering vector ex-

pressing its complex response at time � to a planar

wavefront arriving from direction �. This expression

can be written more compactly as:

x(�) = A(�; �)s(�) + n(�) (2)

where �
def
=(�1 : : :�q)

T ,

A(�; �)
def
=[a(�; �1); : : : ; a(�; �q)] is a p � q

steering-matrix, and s(�)
def
= (s1(�); : : : ; sq(�))

T is a

vector formed from the emitted signals. Let the ar-

ray be sampled sequentially at t = 1; : : : ; K di�er-

ent mutually-exclusive time-slots, and assume that

the steering-matrix can be regarded as quasi-static

during each slot, and denote byAt(�) the steering-

matrix corresponding to the t-th time-slot, i.e.

At(�)
def
=A(�; �) forall � 2 t-th time-slot

Let Xt
def
=[xt(�

t
1); : : : ;xt(�

t
mt
)] denote the t-th

time-slot batch of samples, with mt denoting the

number of samples taken at this time-slot, and

�t1; : : : ; �
t
mt

denoting the sampling instants. Now,

the problem is stated as follows: Given the K

batches of samples X
def
= fX1;X2; : : : ;XKg { esti-

mate the directions �.

To solve this problem, we make the following

assumptions:

A1: The steering vectors fa(�; �)g are known for

all � and all � 2 � , where � denotes the

�eld-of-view.

A2: The sources are far enough so that � can be

considered constant during the whole observa-

tion time.

A3: The noise-vector n(�) of the whole array is a

zero-mean complex-Gaussian wide-sense sta-

tionary process with a covariance matrix �2
I,

where �2 is an unknown positive scalar and I

is the identity matrix, and fn(�ti)g are uncor-

related 8t; i.

A4: The signal-vector s(�) is a zero-mean

complex-Gaussian wide-sense stationary pro-

cess uncorrelated with the noise-vector and

having an unknown Hermitian covariance ma-

trix P. The signal samples fs(�ti )g are uncor-

related 8t; i.

Based on these assumptions and using (2), the co-

variance matrix corresponding to the t-th batch is

given by

Rt(�) = At(�)PA
H
t (�) + �2

I (3)

where ()H denotes complex-conjugate transposi-

tion, and where � denotes a vector composed of

all the real free parameters:

�
def
=(�T ; �P

T
; �2)T (4)

where �P is a real vector formed from the free real

parameters of the Hermitian matrix P in some way.

In case the signals are a-priori known to be uncor-

related, �P = diag(P), a vector containing the di-

agonal entries only.

3 The GLS Estimator

The basic idea behind our approach is to select

those parameters �̂ that give the "best �t" be-

tween the sample-covariances fR̂tg and the model-

covariances fRt(�)g. A reasonable goodness-of-�t



criterion is the sum of squares of the entries of the

di�erence matrices fEt
def
= R̂t �Rt(�)g:

LLS(�)
def
=
X
t

mtkR̂t �Rt(�)k2F

where k�kF denotes the Frobenius norm. However,

the resulting parameter estimates are not asymp-

totically e�cient. A better criterion results if in-

stead of taking the sum of squares of fEtg , we

take the sum of squares of their transformed ver-

sion

Lgls(�)
def
=
X
t

kTt(R̂t �Rt(�))T
H
t k2F (5)

where the transformation matrix Tt is given by

Tt = 4
p
mt R̂

�1=2
t . The elements of the trans-

formed error-matrices f~Et
def
=Tt(R̂t � Rt(�))T

H
t g

get white asymptotically, i.e., it is guaranteed that

for mt !1; 8t, the cross-correlation between any

two elements of ~Et is zero, while the variances of

all elements are identical [8]. The estimator we

therefore propose is given by

(�̂; P̂; �̂2) = arg min
�; �P;�2

fLgls(�)g (6)

Lgls(�) =
X
t

kTt[R̂t�At(�)PA
H
t (�)��2

I]TH
t k2F

where (3) was used to replace Rt(�) in (5). This

estimator can be regarded as a variant of what in

the statistical literature [9] [10] is known as the

Generalized Least Squares (GLS) estimator. We

prove in [8] that this estimator is asymptotically

e�cient, i.e., it achieves the Cramer-Rao bound as

mt !1; 8t.
To solve the minimization problem we �rst min-

imize with respect to �P and �2 while holding �

�xed. Then, we substitute the minimizing values,

P̂(�) and �̂2(�), back into the cost function and

get a reduced cost function that is a function of �

only, thus making the minimization problem much

simpler. The result is [8]

�̂ = argmin
�
kr� A(�)( �AT(�) �A(�))�1AT

R(�)rk2

where r is a Kp2 � 1 vector formed from the

sample-covariances fR̂tg, and where A(�), �A(�)

are Kp2 � (q2 + 1), 2Kp2 � (q2 + 1) matri-

ces formed from the transformed steering-matrices

fTtAt(�)g.

4 A spatial-smoothing algo-

rithm for translation of rigid

arrays

In case the array is rigid (i.e., it is not time-varying)

and its motion is translational (i.e., without rota-

tion), the steering-vector of the array can be written

as at(�) = ej
t(�)a(�) , where a(�) represents

the array steering-vector with respect to a local ref-

erence point attached to the array (say, the array's

center), and where 
t(�) is a motion-induced phase

di�erence expressing the phase di�erence between

the local array's reference point and the global ref-

erence point. Therefore, the steering-matrix can be

represented by

At(�) = A(�)ej� t(�)

where A(�) is the array steering-matrix, and

where � t(�)
def
=diag(
t(�1); : : : ; 
t(�q)) . A

computationally-e�cient eigen-structure-based al-

gorithm, based on the spatial-smoothing method

described in [6] and can be considered as its gener-

alization, can be obtained by combining the time-

varying covariances to get a "spatially smoothed"

covariance matrix

R(�) =
1

K

KX
t=1

Rt(�) = A(�)PAH(�) + �2
I

where Pdef
= 1

K

PK
t=1

n
ej� t(�)Pe�j� t(�)

o
. The

spatially smoothed covariance matrix R(�) has a

structure corresponding to the static case, with

A(�) being the static array's steering-matrix and

P being a modi�ed covariance matrix of the sig-

nals. Therefore, eigenstructure methods, such as

MUSIC [7] can be applied to estimate �.

5 Simulation results

To demonstrate the performance of the pro-

posed algorithms we simulated a 4-omnidirectional-



element Uniform Linear Array (ULA) with a spac-

ing of 0:4�. Two coherent Gaussian sources were

located at �1 = 5� and �2 = �5� relative to

boresight, with Signal to Noise Ratios (SNR) of

0db and -3db, respectively. The array was mov-

ing along the line connecting its elements, and it

was sampled at K = 5 equispaced points along

its route, with one � spacing between these sam-

pling places. The number of samples taken at each

point was identical, i.e., mt = m1; 8t. The phase-

di�erence between the signals at the route's center

was ' = �=2. A set of 100 Monte-Carlo runs was

carried out for each value of the number-of-samples

mt. The DOAs were estimated in each run and the

RMS DOA error of the �rst source was computed

from the whole set. The results obtained by em-

loying the GLS estimator and the Spatial Smooth-

ing (SS) method (using MUSIC), compared to the

CRB [11], are shown in Figure 1. The GLS estima-

tor is clearly superior to the SS estimator and its

asymptotical-e�ciency is evident.
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Figure 1: Two coherent signals at �1 = 5�, �2 =

�5�, SNR1 = 0db, SNR2 = �3db. Four-element

ULA, spacing=0:4�. The solid line displays the

CRB for the DOA error of the �rst source. The

results obtained by GLS and SS are displayed by

o and + , respectively. Distance traveled is 5�.
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