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ABSTRACT

We present an algorithm for the calibration of sensor ar-

rays in the presence of multipath. The algorithm is based

on two sets of calibration data obtained from two angularly

separated transmitting points. Simulation results demon-

strating the performance of the algorithm are included.

1. INTRODUCTION

Modern superresolution direction �nding tech-

niques such as MUSIC [1], Maximum Likelihood

[7], and subspace �tting methods [5], presume the

knowledge of the array response.

As the analysis of these techniques show, [3], [4],

any inaccuracy in the presumed array response re-

sults in severe degradation of performance. The

measurement of the array response, referred to as

array calibration, is therefore a crucial step in the

implementation of these techniques.

The existing calibration techniques, [2], [6], are

based on modeling the array response by a free-

space model perturbed by an unknown coupling

matrix and sensor location uncertainty. In this

paper we address the problem of measuring the

array response in the presence of multipath. This

problem is important since multipath is essentially

unavoidable and it sets the limit on the achievable

calibration accuracy.

2. PROBLEM FORMULATION

Let a(�) denote the p � 1 vector of the array

response (steering vector) to a source impinging

from direction �. The array calibration problem

amounts to measuring a(�) for � 2 (0; 2�]. It is

usually performed by transmitting a signal from

some location, rotating the array and measuring

the array response at each angle. Unfortunately,

in many cases the measured response is composed

not only of the direct path from the transmitting

point to the array, but also, of multiple re
ections

from the surroundings, see �gure 1.

To cope with the multipath problem we propose

to carry out the calibration measurements from

two di�erent transmitting points. Assuming that

the calibration consists of N measurements taken

uniformly on � 2 (0; 2�] the measured p�1 vector

at the angle �k = 2�k
N

1 � k � N , for the l'th

transmitting point (l = 1; 2) can be expressed as :

yl(�k) =

rlX
i=1

�i;la(�k � �i;l) + nl(�k) (1)

where

�i;l - the direction of the i'th re
ection, at the l'th

set, measured with respect to the direction of

the calibrating source.

�i;l - the complex coe�cient representing the

phase shift and the amplitude of the i'th re-


ection, at the l'th set.

rl - the number of re
ections at the l'th set.

nl(
2�k
N

) - the noise vector at the l'th set.

Since the array manifold is measured relative to

some arbitrary point we can assume without loss of

generality that �1;1 = 1 and �1;1 = �1;2 = 0o. Also

since the re
ecting objects remain �xed while the
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Figure 1. The Calibrating Signal with one Re
ec-

tion.



transmitting point change, the relative directions

of the re
ections will change as well and hence

�i;1 6= �i;2 (i 6= 0). The array calibration problem

can now be formulated as follows. Given two mea-

sured data sets
n
yl(

2�k
N

)
oN
k=1

; l = 1; 2 estimate

the array manifold
n
a(2�k

N
)
oN
k=1

.

3. THE PROPOSED SOLUTION

The proposed solution is based on the following

steps :

(i) Estimating the re
ections' parametersn
�i;l;�i;l

o
(ii) \Cleaning" the data by subtracting the re
ec-

tions.

To solve the estimation problem, let wl denote the

N � 1 vector whose k'th element is given by

wl(k) =
Prl

i=1 �i;l�(
2�k
N

� �i;l) where �(�) is Dirac's

delta function, and let Al denote the N � N cir-

culant matrix de�ned by wl

Al =

2
6664

wl(1) � � �wl(N � 1) wl(N)

wl(2) � � �wl(N) wl(1)
...

...

wl(N) wl(1) � � � wl(N � 1)

3
7775 (2)

With this notation we can rewrite (1), for each

sensor 1 � m � p, in matrix form as

ym;l = Alam + nm;l (3)

where am is the N � 1 array manifold of the m'th

sensor, am = [am(
2�
N
); : : : ; am(

2�N
N

)]T Since Al is

a circulant matrix it is diagonalized by the DFT

matrix of order N , and its eigenvalues are given by

the DFT of the generating vector wl. Therefore

FHAlF = diagfFwlg = diagfŵlg; (4)

where F is the DFT matrix of order N , and ŵl is

the DFT of wl given by

ŵl(k) =

rlX
i=1

�i;l!N

k�i;l (5)

with !N being the N 'th order primitive root of

unity !
N
= e

2�j

N . Hence

Al = FdiagfŵlgF
H (6)

Substituting this result into (3) and denoting

Dl = diagfŵlg (7)

we obtain

Fam = D�1l (ŷm;l � nm;l) (8)

where ŷm;l denotes the DFT of ym;l. Since this

holds for both sets of measurements we obtain

D�11 (ŷm;1 � nm;1) = D�12 (ŷm;2 � nm;2) (9)

which can be rewritten as

ŵ1�ŷm;2�ŵ2�ŷm;1 = ŵ2�nm;1�ŵ1�nm;2 (10)

where � denotes elementwise multiplication.

Based on this relation, a LS estimator for the di-

rections of the re
ections is given by

[�̂; �̂] = min
�
+
;�+

kŵ1 � ŷm;2 � ŵ2 � ŷm;1k
2 (11)

where

�+ = [�1;1; : : : ; �r1;1; �1;2; : : : ; �r2;2]
T (12)

� = [�2;1; : : : ; �r1;1; �1;2; : : : ; �r2;2]
T (13)

�+ = [�1;1; : : : ; �r1;1; �1;2; : : : ; �r2;2]
T (14)

� = [�2;1; : : : ; �r1;1; �1;2; : : : ; �r2;2]
T (15)

and recalling that we assume

�1;1 = 1 (16)

and

�1;1 = 00 (17)

Substituting (5) into (11) yields

[�̂; �̂] = min
�
+
;�+

k ŷm;2(k)
Pr1

i=1 �i;1!N

k�i;1�

ŷm;1(k)
Pr2

i=1 �i;2!N

k�i;2k2

(18)

Denoting

�m
l (k; �) = ŷm;l(

2�k
N

)!
N

k� ; l = 1; 2

and

�m
l (�) = [�m

l (0; �); : : : ;�
m
l (N � 1; �)]



we de�ne

Bm(�) =

2
6666666664

�m
1 (�2;1)
...

�m
1 (�r1;1)

��m
2 (�1;2)
...

��m
2 (�r2;2)

3
7777777775

T

we can rewrite (18) as a linear problem in �

[�̂; �̂] = min
�;�

kBm(�)�� ŷm;1k
2 (19)

This estimator is based on the data of the m'th

sensor only. Clearly, we can improve the perfor-

mance by combining the information from all sen-

sors. This yields

[�̂; �̂] = argmin
�;�

kB(�)�� ŷ1k
2 (20)

where

B(�) =
h
B1(�)

T ; : : : ;Bm(�)
T
iT

(21)

and

ŷ1 =
h
ŷT1;1; : : : ; ŷ

T
p;1

iT
(22)

Minimizing �rst with respect to �, with � being

�xed, we obtain

�̂ = (B(�)HB(�))�1B(�)H ŷ1 (23)

and hence, substituting this back into (20) the di-

rections of the re
ection are given by

�̂ = argmin
�

kP?B(�)(ŷm;1)k
2 (24)

where P?B(�)
is the projection on the orthogo-

nal complement of the subspace spanned by the

columns of B(�),

P?B(�) = I�B(�)
�
BH(�)B(�)

��1
BH(�) (25)

Now using (3) we estimate âm = A�1l yml.

4. THE ML ESTIMATOR

In this section we derive the Maximum Likelihood

estimator for our problem. We show that this es-

timator is much more complicated than the LS

estimator derived in the previous section. Let

ym =

"
ym;1

ym;2

#
(26)

and

A =

�
A1

A2

�
(27)

From (3), the maximum likelihood estimator is

given by

[â1; : : : ; âp; �̂; �̂] = arg min
a1;:::;ap;�;�

pX
m=1

kym�Aamk
2

(28)

Minimizing �rst with respect to am we get

âm = (AHA)�1AHym (29)

Now, from (27) and (6) we obtain

AHA = F(jW1j
2 + jW2j

2)�1FH (30)

whereWl = diag(Fwl). Substituting (30) and (6)

into (29) yields

âm = FD(WH
1 F

Hym;2 +W
H
2 F

Hym;1) (31)

where

D = (jW1j
2 + jW2j

2)�1 (32)

Finally, substituting (31) and (6) into (28), and

eliminating the left most F by Parseval identity,

the resulting ML estimator becomes

[�̂; �̂] = argmax
�;�

pX
m=1

kW1Dvk
2+kW2Dvk

2 (33)

where

v = (WH
1 F

Hym;2 +W
H
2 F

Hym;1) (34)

Notice that this estimator involves all the re
ec-

tions parameters', i.e. the DOA's and the re
ec-

tion coe�cients, which are complex parameters,

in contrast to the proposed LS estimator which

involves only the re
ections directions.

5. SIMULATION RESULTS

In this section we present the results of a sim-

ulated experiment that demonstrates the perfor-

mance of the LS estimator. The array consisted of

two sensors, 3:5� apart, and the number of re
ec-

tions was 2, i.e., r1 = r2 = 2. The relative angular

separation in the two sets of measurements was

�1;2 = 15o and �2;2 = 30o, respectively. The sig-

nal to noise ration (SNR) varied from 20 dB to 40

dB. The re
ection coe�cients were �1;1 = 1; �1;2 =
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Figure 2. The dashed line : the error due to

the multipath. The solid line : the error after

the application of the algorithm. �1;1 = 1; �1;2 =

0:05 + 0:01j; �2;1 = 1; �2;2 = 0:15 + 0:16j. �1;2 = 15
o and

�2;2 = 30
o.

0:05+0:01j; �2;1 = 1; �2;2 = 0:15+0:16j. For each

SNR we have performed 50 Monte-Carlo trials.

Figure 2 presents the mean square error (MSE) of

the steering vectors before and after the calibra-

tion algorithm. One can clearly see the improve-

ment due to the algorithm. While the MSE due

to the multipath is independent of SNR, the error

after the application of the algorithm is greatly

reduced.

In the second experiment, the relative angular

separation between the re
ections in the �rst set of

measurements was held �xed at 15o, while the rel-

ative angular separation in the second set of mea-

surements varied from 17o to 72o. The re
ection

coe�cients were �1;1 = 1; �1;2 = 0:11 + 0:2j; �2;1 =

0:7; �2;2 = 0:055 + 0:2j and the SNR was 30 dB.

The MSE of thearray manifolds for each set of

measurements is presented in �gure 3. Notice that

the performance of the algorithm is essentially in-

dependent of the angular separation.

6. CONCLUSIONS

We have presented a novel method for the calibra-

tion of sensor arrays in the presence of multipath.

The method is based on measuring the array man-

ifold from two angularly separated locations, and

involves a solution of a multidimensional optimiza-

tion. The method does not depend on the relative

angular locations of the re
ections. A Maximum

Likelihood estimator for the problem was com-

puted as well, demonstrating the improved com-

putational complexity of our LS estimator.
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Figure 3. The dashed line : the error due to

the multipath. The solid line : the error after

the application of the algorithm. �1;1 = 1; �1;2 =

0:11 + 0:2j; �2;1 = 0:7; �2;2 = 0:055 + 0:2j. SNR=30dB.
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