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Figure 1: The empirical phase error variance as function of
SNR in channel 2. The performance of MLE and (11) are
shown. The CRB and the theoretical variance (12) are also
displayed.

also displayed, (6) and (12), respectively. One may note an
excellent agreement between the empirical results and the
results predicted from theory, for all SNR above -10dB in
channel 2 where some outlier estimates result in a deviation
between estimated and predicted error variance.

In Figure 2, the performance of the MLE, the LP esti-
mator (13) with !̂ given by !̂ = 0:5(!̂1+ !̂2), and the WLP

estimator (13) for z(k) = z1(k) + ei ̂z2(k), is illustrated for
N = 32 and �1; �2 uniformly distributed on (0; 2�). The
phase estimate used for phase corrections of z2(k) is given
by (11). For this scenario, there is only a minor di�erence
between LP and WLP, and thus the two channel WLP and
the LP based on the phase corrected sum of data are ex-
cluded from the comparison. The statistics are based on
1000 independent simulation runs. One may again note an
excellent agreement between predicted and actual results.
The deviation of the MLE from the CRB for SNR2 > 40dB
is due to the interpolation. If 8 times zero-padding is used
instead of 4 times, the MLE follows the CRB beyond 50dB.
It can be noticed that the gain of using the MLE rather than
WLP is limited for high SNR, although the computational
complexity of the MLE is considerably higher. However, at
low SNR the MLE should outperform the WLP.

7. CONCLUSIONS

A mathematical treatment of particle size and velocity es-
timation from two channel measurements has been consid-
ered. In terms of two channel phase and frequency esti-
mation this problem is characterized by short data records
(N = 16� 256), a large variation of the SNR (typically in
the range �10 to +50dB), as well in the SNR ratio between
the di�erent channels.

The study has been restricted to in�nite precision arith-
metics. Since the amplitude of the measured signal may
vary of order 50dB within a short duration, a practical
problem is that the gain of the pre-ampli�ers have to be
adjusted to the range of the A/D converters, alternatively
processing of 1-bit (sign) sampled data. As shown in [2], 1-
bit processing for phase estimation gives a large estimation
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Figure 2: The empirical frequency error variance as function
of SNR in channel 2 for MLE, the two channel averaged LP
estimate, and the WLP estimate based on phase corrected
averaged data. The CRB and the theoretical variances for
LP/WLP are also displayed. For WLP, the theoretical er-
ror variance is calculated with � in (17) replaced with

(CRB( ̂))�1=2.

error, while it performs reasonably for frequency estima-
tion. A possible method is therefore to use 1-bit processing
for frequency estimation combined with the estimator (11)
for phase estimation applied on multibit data.

The CRB has been derived, the performance of the ML
estimator has been studied, and some low complexity cor-
relation based size and velocity estimators have been pro-
posed. In particular, it has been shown that if only the size
of the particle is of interest, a simple correlation based esti-
mator provides accurate results. Velocity estimation from
correlations are also possible based on a size estimate.
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investigations are needed to make the MLE feasible for real-
time applications.

In order to �nd the phase (di�erence) from (10) the
Fourier transform should be found at the MLE of the fre-
quency !̂. This can be done by directly evaluating the DFT
at this frequency, but this is computationally intensive (ca.
4N (real) multiplications). Instead the DFT calculated by
FFT is linearly interpolated, and the phases found from
the interpolated spectrum. It is found that this gives high
enough accuracy for the phase di�erence (see the results
below).

4. PHASE ESTIMATOR

When estimation of phase is su�cient, the following corre-
lation based estimator may be used,

 ̂ = 6 [R̂ ]
(11)

R̂ =
1

N

N�1X
k=0

z1(k)z
�
2(k):

The estimator is motivated by the fact that for noiseless

measurements R =
PN�1

k=0
s1(k)s

�
2(k)=N = �1�2e

i . Thus,

it directly follows that  ̂ !  for increasing SNR, that is
�1; �2 ! 0. For white Gaussian measurement noise one can

show that E[R̂ ] = R meaning that the estimator (11) is

consistent, that is  ̂ !  when N ! 1. The asymptotic

variance of  ̂ can be found using the technique in [5]. The
result is,

var[ ̂]=
SNR1+SNR2+1

2NSNR1SNR2

=CRB[ ̂]
�
1+

1

SNR1+SNR2

�
(12)

where (6) was used in the last equality. From (12) it follows
that as SNR!1 an unity ratio of the error variance to the
CRB is reached, but (11) is not asymptotically (N ! 1)
statistically e�cient. For SNRp = 0dB, p = 1; 2, the loss in
e�ciency, that is the quotient of the error variance divided
by the CRB, is given by 3=2 (1.8dB).

5. FREQUENCY ESTIMATION

In situations where also the frequency is of interest it may
be estimated using correlation based methods. Here, the
study is restricted to methods that utilize �rst lag sample
correlations. In contrary to the case of phase estimation,
frequency estimators based on a �rst lag sample correlation
exhibit an error variance that signi�cantly may exceed the
CRB, especially when the quotient of the number of data
N divided by the signal to noise ratio is large, [7]. On
the other hand, when the quotient is small they may have
excellent performance.

5.1. Single channel estimation

Based on a single channel measurement zp(k), p = 1; 2,
the frequency may be estimated using a weighted linear
predictor frequency estimator, [6]

!̂p = 6 [R̂!;p]; p = 1; 2
(13)

R̂!;p =

N�1X
k=1

Wk zp(k)zp(k� 1)
�

with Wk a weighting function such that
PN�1

k=1
Wk = 1.

With Wk = 1=(N � 1) the method is refered as the Linear

Predictor (LP), and with Wk = 6k(N � k)=(N(N2 � 1))
as the Weighted Linear Predictor (WLP), [6]. These two
estimators result in estimates with error variance

var[!̂p]LP =
1

SNRp(N � 1)

�
1

N � 1
+

1

2SNRp

�
(14)

and

var[!̂p]WLP =
6

SNRpN(N2 � 1)

�
1 +

N2 + 1

10 SNRp

�
: (15)

From (15) it follows that as SNR ! 1 an unity ratio of
the error variance to the CRB is reached, but WLP is not
asymptotically (N ! 1) statistically e�cient. For LP the
quotient of the error variance divided by the CRB is propor-
tional to N=6 at high SNR, and thus the loss in performance
may be substantial, [6]. For low SNR or large N , on the
other hand, LP slightly outperforms WLP, and the variance
of the former tends (as N ! 1) to the lowest variance of
any consistent frequency estimator based on �rst lag sample
correlations, [7]. For �nite N and SNR, other data windows
may exist that produce estimates with lower error variance
than LP/WLP, [5].

Based on (13), the frequency estimator based on mea-
surements from both channels that minimizes the error vari-
ance is

!̂ =

2X
p=1

!̂p

var[!̂p]
=

2X
p=1

1

var[!̂p]
: (16)

The estimator (16), however, requires knowledge of the SNR
in the di�erent channels, that is not apriori known. Assum-
ing equal channel SNR, (16) reduces to !̂ = 0:5(!̂1 + !̂2).

5.2. Dual channel estimation

Based on an estimate of  , let z(k) = z1(k) + ei ̂z2(k),

s(k) = s1(k)+ e
i ̂s2(k), and v(k) = v1(k)+ e

i ̂v2(k). Then
z(k) equals a noisy cisoid with complex-valued amplitude

� = �1e
i�1 + �2e

i(�1+� ) where � =  ̂�  , and the noise
has variance 2�2 where �2 = �21 + �22 . Using z(k) as input
data to LP/WLP in (13) results in an estimate with error
variance (14)/(15), with SNRp there replaced by SNR =
(�21+2�1�2 cos(� ) +�

2) = 2(�21 + �22). Since both sensors
are located in the same measurement volume, a reasonable
assumption in PDA is that �21 � �22, and thus the e�ective
SNR is

SNR =
SNR1 + 2

p
SNR1SNR2 cos � + SNR2

2
: (17)

The total SNR is here dependent on the cosine of the rel-
ative phase error, that is a small quantity proportional to

1=
p
N .

6. COMPUTER SIMULATIONS

In Figure 1, the performance of the correlation based phase
estimator (11) and the MLE (implemented as described in
Section 3) are displayed for N = 32 and  = �=3, where �1
is generated as an uniform random number on (0; 2�). The
estimated variances are based on 1000 independent simu-
lation runs. The CRB and theoretical error variance are



order to analyze their statistical properties (the error vari-
ance), a model of data is needed. In (1)-(3), the parameters
(!;�1;  ; �1; �1; �2; �2) are all assumed unknown.

2. CRAM�ER-RAO BOUND

In [2], the CRB is derived for two channel measurements,
under the assumption that the SNR on the two channels
are the same. This derivation is extended here to the case
when the two channels have di�erent SNR. The vector of
unknown parameters is � = (!;�1;  ; �1; �1; �2; �2). The
elements of the Fisher information matrix are given by (see
[3])

I(�)i;j = (4)

1

�21

N�1X
k=0

�
@�1(k)

@�i

@�1(k)

@�j
+
@�1(k)

@�i

@�1(k)

@�j

�
+
N

2�41

@�21
@�i

@�21
@�j

+
1

�22

N�1X
k=0

�
@�2(k)

@�i

@�2(k)

@�j
+
@�2(k)

@�i

@�2(k)

@�j

�
+
N

2�42

@�22
@�i

@�22
@�j

where

�1(k) = �1 cos(!k + �1) k = 0; : : : ;N � 1

�1(k) = �1 sin(!k + �1)
(5)

�2(k) = �2 cos(!k + �1 �  )
�2(k) = �2 sin(!k + �1 �  ):

Accordingly, the Fisher information matrix is

I(�) =

N�1X
k=0

�
A(k) 0

0 B(k)

�

A(k) =
�21
�21

"
k2 k 0
k 1 0
0 0 0

#
+
�22
�22

"
k2 k k
k 1 1
k 1 1

#

B(k) = diag

�
1;

1

2�41
; 1;

1

2�42

�
:

The resulting Fisher matrix is

I(�) =

N�1X
k=0

�
A 0

0 B

�

A =
�21
�21

"
Q P 0
P N 0
0 0 0

#
+
�22
�22

"
Q P P
P N N

P N N

#

B = diag

�
N;

N

2�41
;N;

N

2�42

�

where P =
PN�1

k=0
k = N(N � 1)=2 and Q =

PN�1

k=0
k2 =

N(N � 1)(2N � 1)=6. By inverting the Fisher matrix, the
CRB is given by

CRB[!̂] =
6

(SNR1 + SNR2)

1

N(N2 � 1)

CRB[�̂1] =
(4SNR1 + SNR2)N + (SNR2 � 2SNR1)

2SNR1(SNR1 + SNR2)N(N � 1)

CRB[ ̂] =
SNR1 + SNR2

SNR1SNR2

1

2N
(6)

CRB[�̂p] =
�2p

2N
p = 1; 2

CRB[�̂p] =
�4p

N
p = 1; 2

where SNRp = �2p=2�
2
p, p = 1; 2.

3. MAXIMUM LIKELIHOOD ESTIMATOR

The MLE was derived in [2]. The frequency is estimated by
minimizing the following expression with respect to !

[P1 � jA1(!)j2][P2 � jA2(!)j2] (7)

or, by maximizing the following (positive) expression

P1P2 � [P1 � jA1(!)j2][P2� jA2(!)j2] (8)

where Pp and Ap(!) are total power and Fourier transform
of the two signals, respectively. Explicitly,

Pp =
1

N

N�1X
k=0

jzp(k)j2 p = 1; 2

(9)

Ap(!) =
1

N

N�1X
k=0

zp(k) exp(�i!k):

Once the MLE !̂ has been found, the other parameters can
be found from

 ̂ = 6 [A1(!̂)]� 6 [A2(!̂)]

�̂p = jAp(!̂)j; p = 1; 2 (10)

�̂p = Pp � jAp(!̂)j2:
For the single channel case, the MLE can be implemented
using FFT with a moderate zero-padding (2 or 4 times) fol-
lowed by parabolic or Gaussian interpolation, with Gaus-
sian giving less bias, [4]. For the two channel case consid-
ered here, interpolation directly on the cross-spectrum ((7)
or (8)) does not seem to work well at high SNR. Two times
zero-padding followed by parabolic interpolation gives suf-
�cient accuracy up to 50 dB for the single channel case.
To obtain the same accuracy for the two channel case with
parabolic interpolation, 128 times zero-padding is needed.
The reason is that the peak of the cross-spectrum (8) is not
well-approximated by a parabola. If jA1(!)j2 and jA2(!)j2
are approximated by parabolas near the peak, (8) is a fourth
order polynomial. It was found, however, that interpolation
with a fourth order polynomial directly on (8) did not work
well, nor did spline interpolation.

Instead the following strategy is employed. The mini-
mum bin of (7) is found using FFT with four times zero-
padding. A parabola is �tted to each spectrum jA1(!)j2 and
jA2(!)j2 using the minimum bin of the cross-spectrum and
the two surrounding bins, giving p1(!) respectively p2(!).
The estimate of ! is then found as the mimimum of the
fourth order polynomial (P1 � p1(!))(P2 � p2(!)).

The above strategy requires �nding the roots of a third
order polynomial (that is, the derivative of the polynomial
(P1 � p1(!))(P2 � p2(!))), which can be done analytically.
The analytic solution is, however, rather complicated. Fur-
thermore, since the method is based on parabolic interpola-
tion, the solution is not totally unbiased. Therefore, further
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ABSTRACT

A mathematical treatment of particle size and velocity esti-
mation from two channel laser anemometry measurements
is considered. Cram�er-Rao bounds for the general case are
derived, and the corresponding maximum likelihood esti-
mator is analyzed through computer simulations. Low com-
plexity correlation based estimators are derived and their
performance is characterized. The results predicted by the-
ory are illustrated by some numerical examples.

1. INTRODUCTION

Estimation of frequency and phase of a sinusoidal signal in
additive noise is a classical problem of estimation theory in
digital signal processing, which has a large number of appli-
cations. In some applications a frequency source is sampled
through several sensors, resulting in output signals with the
same frequency but with di�erent phases, or equivalently,
with di�erent delays. One such application is phase doppler
anemometry (PDA), on which the analysis in this paper is
concentrated. PDA is used to simultaneously measure ve-
locity and size of small spherical particles or dropplets, and
is, as far as is known to the authors, the only technique ca-
pable of simultaneous measurement of velocity and size of
individual particles. This fact makes it possible to correlate
size and velocity in, for example, sprays. PDA is applied in
a number of di�erent �elds: for spray measurements (medi-
cal, spray painting), to measure combustion in fuel injection
engines and generators in power plants, for design of ink-jet
printers, etc.

The basic principle of PDA is to focus one or two laser
beams into a small volume, the measurement volume. When
a particle or dropplet passes through the measurement vol-
ume, light is scattered in di�erent directions. The Doppler
shift of the light is proportional to the velocity of the par-
ticle, and is the same in all directions, while the phase dif-
ferences between light scattered in di�erent directions are
related to the particle size. The signal processing prob-
lem in this application is thus to estimate frequency and
phase of signals from di�erent sensors, all with the same
frequency, but with di�erent phases. The SNR may also

P. H�andel is on leave from the Research and Development
Division, Ericsson Radio Systems AB, Kista, Sweden. He is also
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be di�erent for the sensors, since the intensity of light scat-
tered in di�erent direction may vary many magnitudes of
order.

The noise in the measurements mainly originates from
two sources: photon noise and background noise due to
electronic noise in ampli�ers etc., and background illumi-
nation. While photon noise cannot be characterized as ad-
ditive noise, see [1], the background noise usually is dom-
inating in the most di�cult measurement situations. The
signals may therefore be modeled as sinusoidal signals in
additive, white (Gaussian) noise.

In this paper, some methods for frequency and phase
estimation are analyzed. The scope is restricted to two
sensor systems, but the analysis may be extended to several
sensors.

The measurements from the two sensors are processed
by quadrature mixing and sampling, and are given by

z1(k) = s1(k) + v1(k); k = 0; : : : ;N � 1
(1)

z2(k) = s2(k) + v2(k)

where (s1(k); s2(k)) are the signals of interest. The zero
mean noise sequences (v1(k); v2(k)) are mutually uncorre-
lated, and ful�ll

E[v1(k)v
�
1(`)] = 2�21�k;`; E[v1(k)v1(`)]=0 8k; `

(2)
E[v2(k)v

�
2(`)] = 2�22�k;`; E[v2(k)v2(`)]=0 8k; `

where � denotes complex conjugate, and �k;l is the Kro-
necker delta. The noise powers �1 and �2 may, or may not,
be equal. For calculation of Cram�er-Rao bounds (CRB) and
for derivation of the maximum likelihood estimator (MLE),
the noise will further be assumed Gaussian. In PDA the
signals from the two channels have the same frequency, but
di�erent phases, that is

sp(k) = �pe
i(!k+�p ); p = 1; 2 (3)

where (�1; �2) are the real-valued amplitudes, �p > 0; p =
1; 2, (�1; �2) the initial phases, �p 2 [0; 2�]; p = 1; 2, and !
is the normalized radian frequency, ! 2 (��; �).

The frequency ! contains the information about the ve-
locity, the relative phase  = �1 � �2 contains the infor-
mation about the size of the scattering particle. Thus, the
problem to be solved is estimation of ! and  from data (1).
Although, a model (1)-(3) describing the measurements has
been introduced, the considered estimation methods, except
the MLE, do not explicitly rely on this model. However, in


