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ABSTRACT

We address the problem of estimating the motion of a wide-band
source from single passive sensor measurements, for example, es-
timation of the speed and position of a car moving on a road from
the recording of its acoustic signature at a microphone located next
to the road. We present a new computationally efficient method
based on a time-varying ARMA model for Doppler-shifted ran-
dom processes. Unlike previously proposed approaches which rely
on a “local” periodicity hypothesis for the signal source, or a cy-
clostationary assumption, our method assumes only that the source
is stationary and admits a rational (ARMA) model. The method is
tested on synthetic and real acoustic data.

1. INTRODUCTION

The estimation of the motion of a point source from the signal re-
ceived at fixed passive sensors is a classical problem in statistical
signal and array processing, with numerous applications in com-
munication, radar, sonar, etc. If a single passive sensor is used,
the only information available on the source movements will arise
from wave propagation effects. Whenever a wave source moves
at a speed non-negligible with respect to the wave celerity and the
wave propagate under the free field hypothesis, the received signal
will be subject to dilations of its time axis when compared to the
emitted signal, in addition to propagation delays. For harmonic
signals, these dilations take the form of the well-known Doppler
frequency shift. If some additional assumptions can be made on
the nature of the source and its movement, it becomes usually pos-
sible to exploit these dilations, called here Doppler effect in gen-
eral, to estimate the motion (speed and position) of the source.

In a classical Doppler system, like radar or active sonar, the
signal “emitted” by the source is in fact a “reflection” of a signal
generated by the active sensor. Thus, it is usually known up to a
set of parameters. In this paper, the sensor ispassive, and all that
is known about the signal emitted by the source is that it can be
modeled by a member of a given family of stochastic processes
(viz., ARMA processes).

Our formulation of the Doppler-based motion estimation from
single passive sensor measurments problem is motivated by the

�Christophe Couvreur is a Research Assistant of the Belgian National
Fund for Scientific Research.

yThe work of Yoram Bresler is supported in part by a National Science
Foundation grant No. MIP 91-57377.

following practical application: how to estimate the (possibly time-
varying) speed and position of a vehicle moving on a known path
(e.g., a car on a road) from its acoustic signature at a microphone
located next to the path? Previous attempts to estimate the mo-
tion of an acoustic source from Doppler effects relied on a “peri-
odic” assumption of some sort for the source: temporal periodic-
ity with deterministic and/or random variations of the frequency
[1][2][3][4], or cyclostationarity [5]. Here, the moving source is
modeled as a stationary continuous-time rational (ARMA) pro-
cess. Thus, the model can be applied to wide-band signals without
harmonic components.

The paper is organized as follows. In Section 2 we define a
model for Doppler-shifted rational processes corresponding to a
moving (wide-band) ARMA sources. An acoustical example is
also given. A method for the estimation of the motion of the source
from the recordings at a fixed sensor based on that model is intro-
duced in Section 3. Section 4 presents some experimental results
with synthetic and real data. Conclusions are drawn in Section 5.

2. A MODEL FOR DOPPLER-SHIFTED RATIONAL
PROCESSES

2.1. Constant Doppler Shift

Letxc(t) be a continuous-time Gaussian zero-mean stationary ran-
dom process modeling the signal emitted by the moving point
sourceS and letyc(t) be the signal observed at the fixed receiver
O (Fig. 1). Denote byv0 the absolute speed of the random source,
by vr its radial speed towardO, and letd = jOSj. If the radial
speedvr is constant, then, in the far field [6],

yc(t) � �xc(�t� �); (1)

where
� = 1�

vr

c
(2)

is the Doppler shift factor,� is an attenuation factor inversely pro-
portional tod, � is a propagation delay related tod, andc is the
wave propagation speed (roughly 300 m/s in the case of acoustic
waves in air, for example). Lety[n] = yc(nTs) be a sampled ver-
sion ofyc(t) with sampling periodTs. We will say thatxc(t) is
rational if

Sxc(!) = � jHxc(j!)j
2
= �

����
P (j!)

Q(j!)
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; (3)
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Figure 1: Radial speed of the source (S) with respect to the receiver
(O).

whereP (s) andQ(s) are polynomials ins and! is the radian
frequency. Ifxc(t) is rational andxc(t) is essentially band-limited
so that1=Ts exceeds the Nyquist rate, it was shown in [7] thaty[n]
is also approximately rational and that its PSD is related to that of
xc(t) by

Sy(
) �
1

�Ts
Sxc(
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with

H�(z) =

pX
k=1

Ak

1� e�skTsz�1
: (5)

The constantsAk andsk are defined by the partial fraction expan-
sion

Hxc(s) =

pX
k=1

Ak

s� sk
; (6)

where it as been further assumed thatQ(s) has order greater than
P (s) and only simple roots.

2.2. Time-Varying Doppler Shift

If the motion of the sourceO is such that the radial speedvr(t)
and the distanced(t) vary slowly enough compared to the band-
width of the processxc(t), the received signaly[n] can be as-
sumed locally stationary with local spectrum given by (4)-(5) with
time-varying Doppler parameters�(t) and�(t) function ofvr(t)
andd(t). Thus,y[n] can be represented as a time-varying ARMA
model [8] of the form

y[n] = �

pX
k=1

ak[n]y[n� k] +

qX
k=0

bk[n]�[n � k] (7)

where�[n] is a white innovation sequence. The time-varying co-
efficients in (7) are related to the rational model for the source
(3) and the time-varying Doppler parameters�[n] = �(nTs) and
�[n] = �(nTs) by

Pq

k=0
bk[n]z

�1

1 +
Pp

k=1
ak[n]z�1

=
p

�Ts�[n]H�[n](z): (8)

For future reference, denote byzk[n], k = 1; : : : ; p the time-
varying poles of (7), and observe that

zk[n] = e
�[n]skTs : (9)
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Figure 2: Source moving at a constant speed on a straight path
(e.g., a car on a road).

Also, observe from (4) that the “instantaneous” power ofy[n],
s2[n] = var(y[n]) is approximately equal to the Doppler gain
�2[n] times a scaling factor� independent ofn,

s
2
[n] = �

2
[n]�: (10)

2.3. Simulation of Doppler-shifted Processes: An Acoustical
Example

Given the spectrum of the sourcexc(t) and a description of its
motion, i.e., ofd(t) andvr(t), the model defined by (5)–(8) can
be used to simulate a Doppler-shifted discrete time processy[n]
directly.

Consider the following example. Suppose that an acoustic
sourceS, e.g., a vehicle on a road, is moving on a straight line
at a constant speedv0. The signal emitted by the sourcexc(t) is
assumed to be stationary with the AR(4) spectrum of Fig. 3. The
signalyc(t) is recorded at a microphoneO located at a distance
dCPA of the closest point of approach of the vehicle (Fig. 2) and
is sampled to yieldy[n]. From simple geometric consideration, it
can be shown that the Doppler parameters�(t) and�(t) with re-
spect toO are related tov0 and the time of closest approach of the
sourcetCPA by

�(t) = 1 +
v20
c

tCPA � tp
v20(tCPA � t)2 + d2CPA

; (11)

�(t) =
1p

v20(tCPA � t)2 + d2CPA

: (12)

Figure 4 (a) gives the evolution of�(t) and�(t) in the casev0 =
10 km/h, dCPA = 10 m, andtCPA = 0 s. The wave velocity
c is the speed of sound, which is taken to be equal to 330 m/s.
Using (5)–(8) and taking a sampling frequency1=Ts equal to 20
kHz, y[n] can be modeled by a time-varying ARMA(4,3) process
whose time-varying spectrum is represented in Fig. 4 (b).

This model can be used to simulatey[n] by passing a white
noise�[n] with unit variance through the time-varying recursive
filter (7) whose coefficients are defined by (8). Efficient imple-
mentation of the time-varying filter is easy via its parallel form ob-
tained from (5). Figure 4 (c) shows the spectrogram obtained from
a realization ofy[n] with a length 512 sliding Hanning window
and 1/2 window overlap factor. Visual comparison of this spectro-
gram with spectrograms obtained from real Doppler-shifted data
and informal listening tests validates the approach. The sample re-
alization ofy[n] corresponding to the spectrogram is provided on
the proceedings’ CD-ROM in WAV format.

3. ESTIMATION OF THE MOTION PARAMETERS

Let us assume that the motion of the source is known up to a set of
parameters�. That is,vr(t) = vr(t; �) andd(t) = d(t; �). Thus,
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Figure 3: AR(4) spectrum of the moving noise sourcexc(t).

we have
�(t) = �(t; �) and �(t) = �(t; �): (13)

In the “car pass-by” example of Section 2.3, the unknown pa-
rameters are the speedv0 of the vehicle and the time of passage,
� = fv0; tCPAg. The parametric model for the Doppler param-
eter �(t; �) and �(t; �) are given by (11) and (12). Lety =

(y[1]; : : : ; y[N ]) denote a sample of the signal recorded at the
sensorO. The motion parameter estimation problem consist in
finding � giveny. The spectra of the moving sourceSxc(!) is a
priori unknown. Using the results of Section 2 together with (13),
a computationally efficient solution can be obtained as follows.

Algorithm:

1. Fit an adaptive or a windowed batch ARMA spectral esti-
mator toy using any of the standard techniques [9]. Denote
by âk[n], k = 1; : : : ; p, n = 1; : : : ; N , the coefficients
of this adaptive ARMA spectral estimator and byŝ2[n] its
variance.

2. Compute the rootŝzk[n], k = 1; : : : ; p, n = 1; : : : ; N , of
the time-varying AR polynomials1 + â1[n]z

�1 + � � � +
âp[n]z

�p.

3. Let � denote the extended set of parameters� [ f�g [

fs1; : : : ; spg. Compute�̂ as the solution to the non-linear
least-squares problem

�̂ = argmin
�

NX
n=1

n
�1
��ŝ2[n]� �

2
(nTs; �)�

��2

+�2

pX
k=1

jẑk[n]� exp[�(nTs; �)skTs]j
2
o

for some weighting constants�1 and�2.

4. Take the estimator of the motion parameter�̂ to be the ade-
quate subset of̂�.

Note that only the AR part of the time-varying ARMA model
computed at step 1 of the algorithm is necessary later. An estima-
tor of the AR the AR part of an ARMA model, like a windowed
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Figure 4: Doppler parameters (a), time-varying ARMA spectrum
(b), and spectrogram of a realization (c) for the simulation of a
vehicle “pass-by” at constant speed.



Table 1: Performance of̂v0 on 100 Monte-Carlo runs.

v0 [km/h] dCPA [m] meanv̂0 std dev.̂v0
90 10 89.67 1.86
50 10 49.92 0.86
20 10 19.99 0.36
50 20 49.99 0.73
30 50 29.98 1.61

modified Yule-Walker estimator [9], can be used instead of a “full”
ARMA estimator.

The computation of the time-varying rootsẑk[n] can be per-
formed efficiently by a Gauss-Newton type root-finding algorithm
[10][11]. Indeed, under the local stationarity hypothesis,ẑk[n]
should change slowly. It is thus possible to initialize the roots-
finding algorithm at timen by the values found at timen�1; con-
vergence should be fast. The root-finding step can be combined
with the AR update of step 1 to provide an efficient pole tracking
algorithm.

The non-linear maximization of step 3 can be performed by
any numerical optimization method. For non-linear least-squares,
Levenberg-Marquardt is usually a good choice. The constant�1
and�2 are chosen experimentally to ensure proper weighting of the
fitting errors between the “power” part and the “poles” part. It has
also been found experimentally that using a logarithmic (dB) scale
for the “power” term improved the performance of the estimator.

4. EXPERIMENTAL RESULTS

A series of experiments have been conducted to test the proposed
algorithm. First, Monte-Carlo simulations have been performed
in Matlab using the model described in Section 2.3 with various
combinations of speedv0 and microphone positiondCPA. The
AR part of the ARMA(4,4) model used fory[n] was estimated us-
ing a modified Yule-Walker algorithm on length 4096 data frames
with an overlap factor of 1/2. Table 1 presents some typical results
for the estimation of the speedv0 from 8 s samples ofy(t). The
best performance were obtained by using a set of weightsf�1; �2g
strongly in favor of the “pole” fit to the detriment of the “power”
fit.

Next, real cars and trucks were recorded using a microphone
located next to a straight road. The microphone was placed at a
distancedCPA = 8 m from the center of road. The speeds of
the vehicles were measured using a calibrated speedometer. The
recordings were made originally on a DAT and later downsampled
to 20 kHz and transfered on a workstation for further processing.
The same speed estimation algorithm as above was then applied
to the samples. Various order of ARMA models have been tried
ranging from AR(2) to ARMA(8,8) processes. The best have been
obtained by AR(6) processes, with a weightingf�1; �2g strongly
in favor of the “power” fit. Typical speed estimates presented an
undershoot of 5–10 km/h.

5. CONCLUDING REMARKS

The new Doppler-based passive method for motion estimation in-
troduced in this paper is simple to implement and is quite gen-
eral in its application, in the sense that, unlike previously pro-

posed methods, it does not require any “periodicity” property of
the sound source. It did not perform on the real data as well as
could have been expected from the simulations. In addition to the
fact that ARMA processes are perhaps not well suited to model ve-
hicle noise, we suggest several reasons that can be put forward to
explain this poor performance. First, there was some background
noise and wind noise during the recording of the sound events.
Next, a car or a truck is only approximately modeled by a station-
ary point source. Finally, the Doppler model (11)–(12) does not
account properly for all the sound wave propagation effects. None
of these difficulties is unsurmountable; we believe that the pro-
posed method has shown some promises and should be improved
to account for these phenomena.

6. ACKNOWLEDGMENTS

The first author would like to thank Pierre Lecomte and Lucien
Locoche from Facult´e Polytechnique de Mons for their help with
the collection of the “pass-by” data and IBSR (Institut Belge de la
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