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ABSTRACT

We design a model meant to be the equivalent of Blake's
weak string but in the probabilistic framework. Indepen-
dent line sites delimit piecewise stationary Gaussian au-
toregressives AR(1) corrupted with Gaussian white noise.
Thanks to the Bayesian interpretation, we de�ne the joint
probability which in turn yields the likelihood. We demon-
strate how to make its computation possible in cubic time.
This calculation allows the set of parameters to be tested
but not estimated due to the complex form of the criterion.
Yet the computations done so far provide the materials for
an iterative maximization. Indeed, the Expectation Max-
imization algorithm happens to match the features of this
model and is also easily calculable. When the likelihood
is known, the cost of one step of the latter algorithm is
negligible in comparison with the previous calculations.

1. INTRODUCTION

Unidimensional piecewise continuous data are often repre-
sented by models including boundaries between homoge-
neous data called �breakpoints�. Blake [1] devised a dy-
namic programming algorithm which computes the exact
global minimum of the energy of one of these models known
as the weak string. In this respect, it allows optimal super-
vised segmentation, but the adequate tuning of parameters
is left to empirical supervision.

From the Bayesian viewpoint, minimizing the energy is
equivalent to �nding the �maximum a posteriori� (MAP)
estimate. On the other hand, the Bayesian interpretation
gives rise to new possibilities of probabilistic handling of
the weak string. One of the most fruitful is the de�nition
of the likelihood of the parameters, which has no equiva-
lent in the deterministic framework. In the following, our
goal is to estimate the parameters by a tractable maximum
likelihood method. Computation of the true maximum like-
lihood estimator is impossible due to the complex form of
the criterion. This leads us to an iterative method with in-
creasing likelihood called Expectation Maximization (EM)
[2] [3].

The paper is organized as follow. In Section 2, we be-
gin with some de�nitions and notations to formulate our
model. Then, in the third section, we address the compu-
tation of the likelihood. We give an optimized procedure
whose intermediate calculations will be useful later. The
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EM procedure can be found in Section 4. It uses the by-
products of the preceding section. In the �fth section, the
examples used as benchmarks are found in Blake [1], they
intend to show how the unsupervised segmentation works.

2. PROBABILISTIC FRAMEWORK

2.1. De�nition of the model

Consider an unobserved real valued random vector,X which
is de�ned on a set of pixel sites indexed by integers 1; : : : ; N .
The observed part of the model is a sequence Y following
the simple observation model: Yi = Xi+ "i; where " = ("i)

is a zero-mean Gaussian white sequence of constant vari-
ance �2b . Vectors X and " are assumed independent.

Between pairs of adjacent pixel sites, we introduce a
dual sequence of sites constituting a vectorE of breakpoints,
i.e., 0-1 binary variables When Ei = 1, the breakpoint is
said to be active, which corresponds to a rupture in the
vector X between pixel sites i and i+1. Finally it is useful
to introduce additional breakpoints E0 and EN , which are
assumed to be active.

x1 x2 � � � xi xi+1 � � � xN
j � j � � � � � j � � � � � j

e0 = 1 e1 � � � ei � � � eN = 1

Now we de�ne the energy of the underlying process (X;E)
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where e
�
= 1 � e and the parameters �;�; �"; �x are real

and positive. In accordance with the Gibbsian meaning of
energy, it is equivalent to the de�nition of a Bayesian prior
likelihood given by

p(x je)P (e) / exp(�E): (1)

In order to get the exact energetic formulation of the weak
string, � and �x should tend to 1 and 1 respectively. In-
stead we impose a stationarity condition: (1� �2)�2x = �2":

According to the observation model, the energy of the whole
set (x;y;e) is:
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In order to obtain such a compact form for F , let 1 =

(1; : : : ; 1)t and matrices P = P (N);Q = Q(e);H =H(e),
of size (N �1)�N , (N�1)� (N �1), N�N , according to
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2.2. Block partitioning

From (1,2), it is easy to identify the inverse of the prior
covariance matrix of X knowing E = e as:
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which is clearly block-diagonal, with block limits corre-
sponding to the active breakpoints. More generally, the ac-
tive breakpoints induce a partition of pixel sites into blocks,
according to the �rst of the following de�nitions.

De�nition 1 For any sequence (zk), let us denote zi;j =

(zi; : : : ; zj)
t. Given a set of breakpoints e, a block is an

interval [i; j] of sites such that ei;j = (1; 0; : : : ; 0; 1). If [i; j]

is the kth block, it will be convenient to denote ei;j = ek
alternatively. Such a notion of block will be used in contrast

with the basic term interval, where the values of breakpoints
are not speci�ed. Let us introduce the following compact no-

tations: �(zi;j)
�
= p([i; j] is a block), and for any random

sequence (Zk); k = 1; : : : ;N ,

�(zi;j)
�
= p(zi;j j [i; j] is a block)

stand for the conditional probability density of Zi;j w.r.t.

�[i; j] is a block�, whereas p(zi;j) is the probability density

of Zi;j . Note that both notations are implicit as regards the

random vector itself.

2.3. The line process

We shall make use of another equivalent representation of
the line process. Instead of giving the value of the vector
of breakpoints E, we express it with a sequence (Lk). Lk
is the location of the kth active breakpoint, k � 1:

Lk = inf
i
{i 2 [1;N ];

P
i

j=1
ej = k} (3)

Since E follows a Bernoulli law, Lk is ruled by an exponen-
tial law.

3. COMPUTATION OF THE LIKELIHOOD

3.1. Summation upon e

Our purpose was to de�ne and calculate the joint probabil-
ity, p(x;y je)P (e), according to the Bayesian method. It
is possible to deduce the marginal law of y from a summa-
tion over all the realizations of e. As the line process is
a Bernoulli process, it can be any of the 2N�1 realizations

which means that 2N�1 summations will have to be done.
But when we use the equivalent model based on the arrival
time we manage to do it with a polynomial complexity at a
much lower computational cost. Let y be an interval that
may not necessarily consist of the entire signal. To compute
its likelihood, consider the �rst breakpoint L say. Then we
can write:

p(y) = �0;N�(y0;N ) +
P

N�1

L=1
�(y0;L)p(yL;N )�0;L; (4)

From the above formula, we can �nd a recursion giving the
likelihood of an interval when you know the same for all its
sub-intervals and, the laws �(y0;L) of all the blocks starting
at the same point.

The formulae subsequently given are classical to the
Gaussian case. Till the end of this part, the calculations
are limited to a single block. Therefore, we shall not ex-
plicitly refer to its boundary or its dependence to the line
process:
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Matrices �y
k
and �

xjy

k
are respectively the covariance of yk

knowing e, and of Xk knowing yk and e.

3.2. Computation of the likelihood of a block

The probability of a block �(yi;j) can be found in a constant
number of operations when �(yi;j�1) is known. This is a
classical issue optimally solved by a Kalman smoother [4].
Here, we rather use a Gram-Schmidt structure that is not
more expensive. By doing so, useful intermediate results
that could not be obtained by the Kalman procedure are
available for subsequent purposes.

In order to evaluate the probability in (5), we need to
compute the quantities, yt

i;j�
y(j � i)�1yi;j and det�y(n).
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and for i = 0; : : : ;N � 1 and j = i+ 1; : : : ;N :

ui;j = (yj + �cj�i�1ui;j�1)cj�i; ui;i+1 = yi+1c1;
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When the latter algorithm has been performed, the proba-
bilities of all the blocks are known in order N2 operations.



It only remains to use the recursion based on (4) which is
of order N3 operations. But this critical step is made of
simple calculations. Indeed the inmost loop only contains
an addition. As a result, we have an e�cient algorithm for
the likelihood computation.

4. PARAMETERS ESTIMATION

In the preceding part, we addressed the computation of the
likelihood as it enables us to �nd the proper parameters,
but its expression is too unwieldy to be maximized with re-
spect to them easily. The alternative is to use an iterative
method. The Expectation-Maximization method (EM) ap-
pears to �t this issue. Actually, it is feasible for (�;�"; �b)
but not for �.

To formulate the problem, let the vector of parameters
we want to estimate be � = (�;�2" ; �

2
b). Then we construct

(�n) a sequence whose aim is to converge to it. Let:

Q(�; ~�) = E
�
log p(L;y;x ; ~�) jy ; �

�
p(y ; �) (6)

Here, we multiply the usual function found in [2] by p(y ; �)

to have simpler formulations. Since it does not depend on
~�, this will not change the algorithm. The scheme of the
�xed-point method is to �nd: �n+1 = arg max� Q(�n;�):

In some cases (�n) converges to the solution of the opti-
mization problem. But generally, we cannot assure that
this will be observed.

In general, evaluation of the function Q is a di�cult
task, if not impossible. In the present case, we have the
following formula:

Q(�; ~�) =
P
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�(yi;j)�i;jp(y0;i)p(yj;N) (7)
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where ~� is a non unique set of Gibbsian potentials for
p(L;x;y ; ~�) verifying:P

k

~�(yk;xk; lk; lk+1) = log p(L;x;y; ~�) (8)

and �(xi;j jyi;j) is the Gaussian distribution of xi;j know-
ing yi;j on the block [i; j]. �(yi;j) is the Gaussian distribu-
tion on the block [i; j]. p(yi;j) is the distribution of y on
the interval [i; j]. These distributions are all under �. One
of the good potentials that we have considered is:
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All the calculations done so far correspond to the E-step of
the algorithm. We now have the materials required for the
optimization.

4.1. Estimation of �

In the following three parts, we address the resolution of
the M-step. Each time, we solve for a di�erent parameter.

We begin with �̂. Taking the derivative of Q, equating it
to 0, and splitting the summations, it is easy to �nd:
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4.2. Estimation of �b

The derivation with respect to �2b yields a similar result:
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None of the terms in the brackets are known from a previous
calculation. However, we can estimate them from the by-
products of the likelihood computation. We expand the
�rst one to obtain:bxi;j � yi;j2 =
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Only the last term is to be calculated. This is the purpose
of the set of equations stated underneath.
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Similarly, the trace of the matrix is obtained by recursions
using sequences calculated during the likelihood issue:
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4.3. Estimation of �"

Once again, we apply the same scheme for the solution and
no new recursion is necessary to compute derive the last
reestimation formula.
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Figure 1: Behavior of the EM algorithm on the antisym-
metric step of [1] with added Gaussian noise,

(�) � = 4; (��) � = 8; (��) � = 16.
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4.4. The algorithm

The estimation formulae (9,10,11) are reminiscent of the
classical EM formulae. Besides, they resemble each other
apart from one factor. In particular, the denominator in-
volves always the same sum. Therefore, it is e�cient to
conduct the three estimations at the same time. When the
likelihood is already computed, the EM improvement of the
parameters is of order n2 operations. Thus it is negligible
in comparison with the previous computations. All this is
made possible by using the optimized procedure instead of
brutally inverting the matrices at each step.

5. EXPERIMENTAL RESULTS

Our model is based on the weak string de�ned by Blake.
As an attempt to stick to his study, and because the data
are available, we performed our algorithm on the curves
he gave. The antisymmetric step �ts our purposes of test-
ing because it was corrupted with di�erent realizations of
noise. As is depicted in Fig. 1. The treatment required few
iterations. We veri�ed that the estimation of the param-
eters � and �x describing the underlying process was not
a�ected by a change in the noise variance. This is logical
since this process does not depend on �b; but was not clear
from the expression of the re-estimation formulae. Besides,
the estimated variance of the noise matches with what was
expected according to [1].

Finally, there remains one parameter, � which cannot
be evaluated. Table 1 describes the behavior of the esti-
mated parameters with respect to �. As it tends to 1, they
converge to limit values. In this respect, it allows us to ex-
tend some of the properties of the model to this limit case.

Table 1: Range of values of the estimated parameters when
� is close to 1. The original signal is a step found in [1] with
an added Gaussian noise with �b = 4 for the �rst three lines,
8 the second three ones, and 16.

� 0:9 0:99 0:9999 1� 10�6 1� 10�10

� 4:767 4:814 4:755 4:705 4:702

�b 1:025 3:635 3:914 4:025 4:030

�x 14:39 13:07 27:81 32:45 31:94

� 4:618 4:731 4:694 4:673 4:672

�b 5:278 7:187 7:616 7:676 7:678

�x 17:87 17:27 29:30 32:46 32:46

� 4:338 4:600 4:650 4:653 4:653

�b 14:09 15:99 16:11 16:10 16:10

�x 22:51 19:13 28:14 30:66 30:70

For instance a segmentation is feasible no matter how close
to an unstable process the model is. We want to stress that
in the cases at hand, we always found a good edge detection
with estimated parameters. On the contrary, when they are
chosen at random, the results often prove to be aberrant.

6. CONCLUSION

Addressing the weak string de�ned by Blake in a determin-
istic framework as a Markov process is possible due to the
Bayesian interpretation. This leads us to a model made of
Gaussian AR(1) bounded by random breakpoints. In this
respect, the Expectation Maximization, EM algorithm gives
good results and particularly matches the characteristics of
the model. Indeed, its computation is almost straightfor-
ward when the likelihood is known. We gave optimized
procedures for performing both the calculation of the like-
lihood and the EM re-estimation of the parameters. Other
studies in the same �eld, proved that this approach enables
us to de�ne new segmentation estimators which give an al-
ternative to Blakes's dynamic programming algorithm.
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