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ABSTRACT

The problem of estimating parameters of discrete-time
non-Gaussian autoregressive (AR) processes is addressed.
The subclass of such processes considered is restricted to
those whose driving noise samples are statistically inde-
pendent and identically distributed according to a Gaus-
sian-mixture probability density function (pdf). Because
the likelihood function for this problem is typically un-
bounded in the vicinity of undesirable, degenerate param-
eter estimates, a global maximum likelihood approach is
not appropriate. Hence, an alternative approach is taken
whereby a �nite local maximum of the likelihood surface is
sought. This approach, which is termed the quasi-maximum
likelihood (QML) approach, is used to obtain estimates of
the AR parameters as well as the means, variances, and
weighting coe�cients that de�ne the Gaussian-mixture pdf.
A technique for generating solutions to the QML prob-
lem is derived using a generalized version of the expecta-
tion-maximization principle.

1. INTRODUCTION

Estimation of parameters of discrete-time non-Gaussian au-
toregressive (AR) processes has typically been approached
using methods based on higher-order statistics (HOS) [5].
The approach developed in this paper is fundamentally dif-
ferent from the HOS approach in that it assumes a speci�c
form for the probability density function (pdf) of the ob-
served data, and is therefore entirely parametric. In partic-
ular, we consider processes that can be represented as the
output of a linear time-invariant (LTI) AR system driven by
noise samples that are statistically independent and iden-
tically distributed (i.i.d.) according to a Gaussian-mixture
pdf (i.e., a pdf that is a weighted average of a �nite num-
ber of Gaussian densities having arbitrary means and vari-
ances); we call such processes ARGMIX (AutoRegressive
Gaussian-MIXture) processes. We seek estimates of the
AR parameters jointly with the mixture parameters|i.e.,
the means, variances, and weighting coe�cients|that de-
�ne the Gaussian-mixture pdf. Joint maximum likelihood
(ML) estimates have not been directly pursued in the past
because the value of the likelihood function is in�nite for
certain known, degenerate parameter values. In general,
these parameter values are not useful as estimates, even
though, strictly speaking, they do maximize the likelihood
function. However, as we shall see in this paper, strategies
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based on �nding nondegenerate local maxima of the likeli-
hood function yield solutions that are useful.
The Gaussian-mixture model is capable of closely ap-

proximating many densities, and has been considered by
a number of researchers for this purpose (see, for exam-
ple, [3], [6], [9]). Yet only a few researchers, most notably
Sengupta and Kay [8] and Zhao et al. [10], have considered
Gaussian-mixture models in conjunction with AR systems.
Sengupta and Kay [8] address the problem of ML estima-
tion of AR parameters for ARGMIX processes in which two
Gaussian pdfs constitute the mixture, each with zero mean
and known variance, but with unknown relative weighting.
They use a conventional Newton-Raphson optimization al-
gorithm that is initialized by the least-squares solution to
�nd ML estimates for the AR parameters and the single
weighting coe�cient, and show that the performance of the
ML estimate is superior to that of the standard forward-
backward least-squares method. In a separate investiga-
tion, Zhao et al. [10] also consider ML estimation of the
AR parameters of ARGMIX processes and derive a set of
linear equations whose solution gives the ML estimate for
the AR parameters when all the mixture parameters are
known. When the mixture parameters are unknown, they
combine these linear equations with an ad hoc clustering
technique to produce an iterative algorithm for obtaining
a joint estimate of both the AR parameters and the mix-
ture parameters. They do not guarantee convergence of
this algorithm or optimality of the estimate in any sense,
but demonstrate empirically that the performance of their
algorithm is superior to that of HOS-based methods in cer-
tain cases.
We use the expectation-maximization (EM) method to

derive an iterative algorithm, called the EMAX algorithm
(which stands for EM principle applied to ARGMIX pro-
cesses), for jointly estimating the AR parameters and mix-
ture parameters for ARGMIX processes. The EMAX al-
gorithm �nds local maxima of the likelihood function. We
demonstrate that, when initialized appropriately, the esti-
mates corresponding to these local maxima are desirable
solutions, and hence that the likelihood function can still
guide us to useful answers via its local maxima even though
the ML estimation problem is degenerate.

2. PROBLEM FORMULATION

2.1. Notation

We adopt the convention of writing random variables in up-
per case and particular realizations of random variables in
lower case. If X is a random variable, then we denote its
pdf by fX(�). If this density depends on a parameter � then
it is written fX(�; �). Expectations associated with densities
that depend on a parameter � are analogously denoted by
Ef�; �g. Vector-valued variables, both random and deter-
ministic, are written in boldface. If x is an n-dimensional
vector, then the ith element of x is denoted by x(i) for



i = 1; � � � ; n. Finally, we introduce the function de�nition
N (�;�; �) to represent a Gaussian pdf with mean � and
standard deviation �.

2.2. Statistical Signal Model

We consider a discrete-time scalar-valued random process
fYtg that satis�es the Kth-order autoregressive di�erence

equation Yt =
PK

k=1 akYt�k + Vt, where fakgKk=1 are the
real-valued AR coe�cients of the process, and fVtg is
a sequence (termed the driving process or driving noise)
that consists of i.i.d. random variables having a Gaussian-

mixture pdf de�ned by fV (v) =
P

M

i=1
�i N (v;�i; �i),

where the weighting coe�cients f�igMi=1 satisfy �i � 0

for i = 1; 2; � � � ;M and
PM

i=1
�i = 1. Alternatively,

we can express the tth sample of the driving process as
Vt = �(�t)Wt + �(�t), where fWtg is a sequence of i.i.d.,
zero-mean, unit-variance Gaussian random variables, � and
� are mappings de�ned by �(i) = �i and �(i) = �i for
i = 1; 2; � � � ;M , f�tg is a sequence of i.i.d. discrete-valued
random variables distributed according to the probability
law Pr(�t = i) = �i for i = 1; 2; � � � ;M , and the processes
fWtg and f�tg are assumed statistically independent.
We assume that the order of the autoregression, K,

and the number of constituent densities in the Gaussian-
mixture pdf, M , are given, and that the parameters � =
[�1 � � ��M ]T , � = [�1 � � ��M ]T , � = [�1 � � ��M ]T , and a =

[a1 � � �aK ]T are unknown. Our observations for the random
variables Y�K ; � � � ; YN�1 are the values y�K; � � � ; yN�1, re-
spectively; from these observations, we wish to estimate
the parameter vector 	 = (�;�;�;a). For notational con-

venience, we de�ne the random vectors Y = [Y0 � � �YN�1]T
and Yt = [Yt�1 � � �Yt�K ]T for t = 0; 1; � � � ;N , and denote
the realizations of these vectors by y and yt, respectively.

2.3. Approach to Parameter Estimation

As mentioned earlier, we are not seeking a global ML es-
timate because in most cases degenerate estimates exist
that have in�nite likelihood. To see how such degenerate
estimates can arise, one can easily verify that if we put,
say, âi = 0 for i = 1; � � � ;K, (�̂i; �̂i; �̂i) = (0; 1; 1=M) for
i = 2; � � � ;M , and �̂1 = y0, and then let �̂1 ! 0, then the
likelihood function fY0;Y(y0;y;	

0) will increase without
bound. This assignment of parameter values corresponds
to choosing the unknown AR system to be an identity sys-
tem and one of the Gaussian densities in the mixture to be
an impulse centered directly on one of the observations.
It is apparent that degenerate estimates are obtained only

if one or more of the standard deviation estimates is cho-
sen to be zero. We may be tempted to avoid this problem
by restricting all of the standard deviation estimates to be
greater than some prespeci�ed positive threshold. However,
if this minimum threshold is set too low, then meaningless
estimates can arise when the largest likelihood value occurs
on the boundary of the restricted parameter space near a
singularity at which �̂i = 0 for some i. Yet if the threshold
is set too high, we risk excluding the best available esti-
mate, since a component of the true Gaussian-mixture pdf
may have a standard deviation smaller than the arti�cially
set threshold.
One alternative to maximizing the likelihood function is

to �nd the parameters that achieve the largest of the �nite
local maxima [3]. In general, no closed-form solution exists
for this estimate, and a numerical method must typically
be used. Because the likelihood surface usually has a large
number of local maxima, classical optimization techniques
cannot be guaranteed to �nd the largest local maximum.
However, Titterington [9] has found that methods based on
�nding local maxima (not necessarily the largest �nite local
maximum) yield useful estimates. Accordingly, we take the

approach of searching for local maxima of the likelihood
function using the generalized EM algorithm.
More formally, if we let P denote the set of all possible

values for the parameter vector 	, then the estimate we

seek for 	 is any b	 satisfyingb	 2 arg max
	02P

�
log fY0

(y0;	
0) + log fYjY0

(yjy0;	0)
	
;
(1)

where the notation argmaxx2Pfg(x)g stands for the set of
all values in P achieving �nite local maxima of g.

Since the estimate b	 is de�ned in terms of the likelihood
function, but is not obtained through a standard global
maximization, we refer to this estimate as a quasi-maximum
likelihood (QML) estimate. In the sequel, we shall assume
that N � K, i.e., that the number of samples in the ob-
served sequence is much greater than the number of AR pa-
rameters to be estimated. Under this assumption, we may,
as is standard in the derivation of ML estimates for Gaus-
sian AR processes, ignore the e�ect of the initial condition
(represented by the �rst term of the log-likelihood function
appearing on the right-hand side of (1)) and assume that a

QML estimate is any b	 satisfyingb	 2 arg max
	02P

�
log fYjY0

(yjy0;	0)
	
: (2)

3. SOLUTION VIA THE EM PRINCIPLE

The EM algorithm, which was �rst proposed by Dempster
et al. [1], is an iterative technique for �nding local maxima of
likelihood functions. Although its convergence rate is slow,
this algorithm converges reliably to a local maximum of the
likelihood function under appropriate conditions, requires
no derivatives of the likelihood function, and often yields
equations that have an intuitively pleasing interpretation.
The EM algorithm is best suited to problems in which there
is a \complete" data speci�cation Z, from which the origi-
nal observations (Y;Y0) can be derived, and such that the
expectation Eflog fZ(Z;	0) j Y = y;Y0 = y0;	

00g can be
easily computed for any two parameter vectors 	0;	00 2 P.
For our problem, we use the complete data speci�cation
Z = (Y;Y0;�), where � is the vector of pdf-selection vari-

ables de�ned by � = [�0 � � ��N�1]T . With this choice of
complete data, the EM algorithm as applied to our problem

generates a sequence of estimates f	(s)g1s=1 according to

the recursive formula 	(s+1) = argmax	02P U(	0;	(s)),
where

U(	0;	(s)) =

Eflog fY;�jY0
(Y;�jy0;	0

) j Y = y;Y0 = y0;	
(s)g;

(3)

and some starting estimate 	(0) must be chosen to initialize
the recursion.
To derive the EMAX algorithm, we let 	

0 =
(�0;�0;�0;a0) and let

U1(�
0
;	

(s)) =

Eflog f�jY0
(�jy0;�0) j Y = y;Y0 = y0;	

(s)g (4)

U2(a
0
;�

0
;�

0
;	

(s)) =

Eflog fYj�;Y0
(yj�;y0;a0;�0;�0) j Y = y;Y0 = y0;	

(s)g:
(5)

Then the EM recursion can be equivalently expressed as

�
(s+1) = argmax

�0
U1(�

0
;	

(s)) (6)

(a(s+1);�(s+1);�(s+1)) = arg max
a0;�0;�0

U2(a
0
;�

0
;�

0
;	

(s))
(7)



To �nd �(s+1) so that (6) is satis�ed, we �rst let Cj(�)
be the number of times the symbol j appears in the vector
� and let

Pt;j(	
0
) = Prf�t = j j Y = y;Y0 = y0;	

0g (8)

for all 	0 2 P, for t = 0; � � � ;N � 1 and j = 1; � � � ;M .
Using these de�nitions, we can write

U1(�
0
;	

(s)) = Ef log
MY
j=1

�
0Cj(�)

(j) j Y = y;Y0 = y0;	
(s)g
(9)

=

MX
j=1

N�1X
t=0

Pt;j(	
(s)) log �0(j): (10)

Then, using Jensen's inequality, the maximization in (6),

which is over all �0 such that �0(j) � 0 and
PM

j=1
�0(j) = 1,

has the solution

�
(s+1)
(j) =

1

N

N�1X
t=0

Pt;j(	
(s)): (11)

To attempt the maximization in (7), we use the knowl-
edge that the driving process is a sequence of i.i.d. Gaussian-
mixture random variables to write the pdf forY conditioned
on � and Y0 as

fYj�;Y0
(yj�;y0;a0;�0;�0) =

N�1Y
t=0

N (yt � yTt a0; �0(�t); �
0

(�t))
(12)

Notice that the term yt � y
T
t a

0 represents the residual or
prediction error obtained by using a0 as the AR parameter
vector. The function being maximized in (7) can then be
written as

U2(a
0
;�

0
;�

0
;	

(s)) =

� N

2
log 2� �

N�1X
t=0

MX
j=1

Pt;j(	
(s)) log �0(j)

�
N�1X
t=0

MX
j=1

Pt;j(	
(s))

(yt � yTt a0 � �0(j))
2

2�
02
(j)

:
(13)

Taking derivatives of this expression with respect to the
quantities �0, �0, and a0 and setting the resulting expres-
sions equal to zero yields three coupled nonlinear equations
that de�ne a stationary point of the right-hand side of (13).
Because we are unable to solve these nonlinear equations
analytically, it is di�cult to �nd a global maximum. We
instead use the method of coordinate ascent to numerically
�nd a localmaximum, resulting in a GEM algorithm rather
than an EM algorithm. Coordinate ascent increases a mul-
tivariate function at each iteration by changing one variable
at a time. If, at each iteration, the variable that is allowed
to change is chosen to achieve the maximum of the function
while the other variables are kept �xed, then coordinate
ascent converges to a local maximum of the function [4].
Coordinate ascent is attractive because it is simple to max-
imize (13) separately over each variable. The coordinate-

ascent algorithm is initialized by setting ~�
(0)
(j) = �

(s)
(j) and

~�
(0)
(j) = �

(s)
(j) for j = 1; � � � ;M , and setting ~a(0) = a

(s). It

then proceeds iteratively by using the following formulas:

~�
(i+1)
(j) = argmax

�0
j

U2(~a
(i)
; ~�

(i)
(1); ::;�

0

j; ::; ~�
(i)
(M); ~�

(i)
;	

(s))

=

PN�1

t=0
Pt;j(	

(s))(yt � yTt ~a(i))PN�1

t=0
Pt;j(	

(s))
(14)

~�
(i+1)
(j) = argmax

�0
j

U2(~a
(i)
; ~�

(i+1)
; ~�

(i)
(1); ::; �

0

j; ::; ~�
(i)
(M);	

(s)
)

=

vuutPN�1

t=0 Pt;j(	
(s))(yt � yTt ~a(i) � ~�

(i+1)
(j) )2PN�1

t=0
Pt;j(	

(s)) (15)

~a(i+1) = argmax
a0

U2(a
0
; ~�(i+1); ~�(i+1)

;	
(s))

=

"
N�1X
t=0

MX
j=1

Pt;j(	
(s))

(~�
(i+1)
(j) )2

yty
T
t

#�1
"
N�1X
t=0

MX
j=1

Pt;j(	
(s))

(~�
(i+1)
(j) )2

(yt � ~�
(i+1)
(j) )yt

#
: (16)

If this recursion is iterated for i = 0; � � � ; J � 1, then we de-

�ne our parameter updates by a(s+1) = ~a(J), �(s+1) = ~�(J),

�
(s+1) = ~�(J). For su�ciently large values of J , the up-

dated parameters are, for practical purposes, local maxima
of (13). Since the EMAX algorithm is a GEM algorithm
that chooses the updated parameter estimates to be local
maxima of (13), it converges to a stationary point. In sum-
mary, then, a single iteration of the EMAX algorithm con-

sists of computing fPt;j(	(s))g, applying (11), and iterating
(14){(16) until convergence.

4. NUMERICAL EXAMPLE: AR PROCESS

WITH LAPLACIAN DRIVING NOISE

In many applications, we would like to obtain ML esti-
mates for the parameters of an AR system, but the ML
problem is ill-posed because the marginal pdf character-
izing the driving noise is unknown. In certain cases,
however, it may be reasonable to assume that the true
marginal pdf is accurately modeled by a Gaussian-mixture
pdf. For such cases, if we process our observations with
the EMAX algorithm, then we might expect the EMAX al-
gorithm to �nd the mixture parameters that yield a good
approximation to the true driving-noise pdf and simulta-
neously to produce good approximations to the ML esti-
mates for the AR parameters. With the present exam-
ple we demonstrate the validity of this approach to the
ML estimation problem. In particular, we consider the
parameter estimation problem for a �fth-order AR pro-
cess whose AR coe�cients are given by (a1; a2; a3; a4; a5) =
(1:934;�2:048; 1:072;�0:340; 0:027). The driving noise for
this process consists of i.i.d. samples distributed according
to a Laplacian pdf de�ned by fV (v) = (1=2�) exp f�jvj=�g,
where the scale parameter � (which is related to the stan-

dard deviation � for this density by � =
p
2�) was put at

� = 5.
To �nd parameter estimates for this problem with the

EMAX algorithm, we �xed the number of Gaussian densi-
ties in the mixture at N = 3 and constrained the means of
these constituent densities to be zero. We used the following
simple method for generating an initial parameter estimate:

The vector a(0) was computed using the forward-backward
least-squares technique from traditional AR signal analy-
sis. Each of the M elements of � was randomly gener-
ated according to a uniform pdf having region of support

[0;maxtfv(0)(t) g �mintfv(0)(t) g], where v
(0)
(t) is the tth element

of the residual sequence v(0) produced by applying the �l-

ter 1�PK

i=1
a
(0)
(i)
z�i to the sequence of observations. The

elements of the weighting coe�cient vector �(0) were all set
equal to 1=M . Finally, because the means were assumed to

be zero, �(s) was set to zero for all s � 0.



Sample Sample Sample Sample

True Mean Mean MSE MSE

Value (ls) (emax) (ls) (emax)
�:001 �:001

a1 1.934 1.931 1.932 1.075 0.630

a2 -2.048 -2.041 -2.045 5.157 2.878

a3 1.072 1.065 1.069 8.400 4.777

a4 -0.340 -0.336 -0.338 4.971 2.919

a5 0.027 0.026 0.026 1.051 0.629

Table 1. Sample means and sample mean square

error values for parameter estimates produced by

the least squares (LS) method and the EMAX al-

gorithm.

We performed a total of 500 trials. On each trial, a se-
quence of 1000 data points was generated and processed
with the EMAX algorithm. The sample means and sam-
ple mean square error (MSE) values of the parameter es-
timates produced by the EMAX algorithm are presented
in Table 1. To provide a convenient point of reference, we
have also shown the sample means and sample MSE val-
ues of the AR parameter estimates given by the classical
forward-backward least-squares method.
Observe from the table that, for each AR parameter, the

ratio of the MSE of the least-squares estimate to that of
the EMAX estimate ranges approximately from 1:7 to 1:8.
The superior performance of the EMAX algorithm may be
attributed to the ability of its assumed Gaussian-mixture
pdf to closely approximate the Laplacian pdf, as is shown
for a typical case in Figure 1(a). It is clear from this �gure
that the approximation is very good over the interval con-
taining most of the driving-noise samples. However, since
the number of Gaussian densities in the mixture is �nite, an
accurate model for the Laplacian density may be obtained
only over a �nite region of support. Eventually, the tails of
the Gaussian-mixture pdf become bounded by a function of
the form k1 expf�k2v2g for appropriately chosen constants
k1 and k2. Indeed, Figure 1(b) reveals this phenomenon
with the aid of a log-magnitude scale.
As a further test of the EMAX algorithm, we compared

its performance to that of the true ML estimator for this
problem. It can be shown [2] that if the samples of the driv-
ing noise for an AR process are i.i.d. and Laplacian, then
the ML estimate for the AR parameter vector a is given by
the value of a0 that minimizes the sum of absolute resid-
uals

PN�1

t=0 jyt � y
T
t a

0j. An algorithm for �nding such a

value for a0 was proposed by Schlossmacher [7]; this algo-
rithm is based on the method of iteratively reweighted least
squares and is therefore easy to implement on a computer.
The experimental results obtained using this algorithm are
given in Table 2. A comparison of the sample MSE values
in Table 2 with those given in Table 1 reveals that the ML
estimator performs only slightly better than the EMAX al-
gorithm, despite the fact that the ML estimator is able to
exploit exact knowledge of the driving-noise pdf.

5. CONCLUSION

We have presented a general iterative technique known as
the EMAX algorithm for estimating the parameters of a
process that can be represented as the output of an autore-
gressive LTI system driven by a sequence of i.i.d. random

Sample Sample

True Mean MSE

Value (ml) (ml)
�:001

a1 1.934 1.933 0.577

a2 -2.048 -2.045 2.725

a3 1.072 1.070 4.289

a4 -0.340 -0.339 2.423

a5 0.027 0.027 0.540

Table 2. Sample means and sample mean square

error values for parameter estimates produced the

ML estimation algorithm of Schlossmacher.
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Figure 1. Laplacian pdf (dashed curve) for driving

process of the example and a typical estimate of

the pdf (solid curve) produced by the EMAX algo-

rithm: (a) linear-magnitude scale (with horizontal

axis spanning �3 standard deviations), and (b) log-

magnitude scale (with horizontal axis spanning �15
standard deviations).

variables having a Gaussian-mixture pdf. The Gaussian-
mixture assumption for the driving-noise pdf provides a
convenient and general parametric framework for analyzing
non-Gaussian AR signals. Although the likelihood function
associated with ARGMIX processes is typically unbounded
in the vicinity of undesirable, degenerate parameter values,
we have seen in our numerical example that good estimates
can still be obtained by searching for �nite local maxima
of the likelihood surface. The EMAX algorithm, by �nding
these local maxima, provides a useful way of exploiting the
ARGMIX model to obtain high-quality estimates of signal
parameters.
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