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ABSTRACT

The aim of this paper is Bayesian estimation of the
parameters of a polynomial phase signal. This prob-
lem, encountered in radar systems for example, is usu-
ally solved using a time-frequency analysis or phase-
only algorithms, see [4] for a detailed introduction. A
Bayesian approach using Markov chain Monte Carlo
(MCMC) methods for estimating a posteriori densi-
ties of the polynomial parameters is proposed. This
approach has the main advantage : it gives a direct
estimation of all polynomial coe�cients, contrary to re-
cently developed algorithms, [4], [2].

1. PROBLEM STATEMENT

The signal under study is a noisy polynomial phase
signal sn as:

sn = A exp(j

MX
i=0

ain
i) + en (1)

where en is a complex gaussian i.i.d. noise of known
variance �2 and zero mean.

The aim of this paper is to estimate the param-
eter a = fa0; a1; : : : ; aMg. The Bayesian solution is
to evaluate the joint posterior probability density of a
conditional on the data s = fs0; s1; : : : ; sN�1g and the
prior information I, abbreviated as p(ajs; I).

The knowledge of this probability density will then
allow us to sample the marginal posterior probability
density of ai, p(aijs; a� faig; I) (We note a� faig the
set a without the element ai). We construct chain of
samples whose the untractable target density is p(aijs; a�
faig; I) using a stochastic algorithm, a Markov Chain
Monte Carlo (MCMC).

Finally, a Minimum Mean Square Error (MMSE)
Bayesian estimator is applied (see [3]).

2. DETERMINATION OF P(ajs; I)

By applying Bayes' theorem, the joint posterior prob-
ability density of all of parameters, p(A; ajs; I), is :

p(A; ajs; I) =
p(A; ajI)p(sjA; a; I)

p(sjI)
(2)

Three probabilities are required :

� A priori probability density of the parameters
given a priori information I, p(A; ajI).

� Direct probability density or likehood function,
p(sjA; a; I).

� Probability of the data given I, a normalization
constant here, p(sjI).

Then,

p(A; ajs; I) / p(A; ajI)p(sjA; a; I) (3)

Amplitude A of the signal is referred to as a nui-
sance parameter. To remove this parameter, the joint
probability density is integrated on all possible values
of A :

p(ajs; I) =

Z +1

�1

p(A; ajs; I)dA (4)

Calculation of the p(ajs; I) is at least a three step
problem : assign the direct then the prior probabil-
ity density and �nally remove the dependence on the
amplitude by integration.

2.1. Assignment of direct probability

From the knowledge of noise probability, likehood func-
tion is :

p(sja; A; I) =

N�1Y
i=0

p(ei)

=
1

�N�2N
exp[�

1

�2

N�1X
k=0

jsk � A exp j

MX
i=0

aik
ij2] (5)

It is worth noticing that the likehood function de-
pends on �2, but as the noise variance is assumed to
be known, we do not make it appear.



2.2. Assignment of prior probability

Non-informative prior probability densities are chosen
to express ignorance about the value of the parameter
vector in absence of data.

All parameters are assumed to be uniformly dis-
tributed, p(a0jI) = k1, : : : , p(aM jI) = kM and p(AjI) =
kM+1 where ki is constant, i = 1 � � �M + 1.

Eq. (3) becomes :

p(A; ajs; I) / p(sjA; a; I) (6)

2.3. Elimination of nuisance parameter

Once all terms in the posterior probability density func-
tion have been assigned, amplitude of the signal is re-
moved by integration. Using the following standard
identity :

Z +1

�1

exp(�ax2 � bx� c)dx =

r
�

a
exp(

b2

4c
� c)

(7)

Eq. (4) becomes :

p(ajs; I) / exp
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(8)

where <(sk) and =(sk) are respectively real and imag-
inary part of the data.

3. MCMC METHODS

The objective is to produce samples of marginal poste-
rior probability density of each parameter ai, p(aija�
faig; s; �; I) from the joint posterior probability density
(8).

p(aija� faig; s; I) =
p(ajs; I)

p(a� faigjs; I)
(9)

The problem is that p(a� faigjs; I) cannot be ob-
tained by integration over ai and conventional numer-
ical integration methods are not appropriate. Then,
we turn to MCMC methods, straightforward to imple-
ment.

3.1. RandomWalk Metropolis-Hasting method

In recent years, an increasingly amount of attention
has been devoted to MCMC methods, because of the
large spread of applications. The usual approach to
Markov chain theory on a continuous state space is
to start with a transition kernel P (x;A) for x 2 Rd

and A 2 B, where B is the Borel �-�eld on Rd. The
transition kernel is a conditional distribution function
that represents the probability of moving from x to
a point in the set A, P(x;Rd) = 1 and P(x; fxg) is
not necessarily 0. Under certain conditions, it can be
shown that the nth iterate converges to the invariant
distribution.

General idea of the MCMC methods is : the invari-
ant density is known ( perhaps up to a constant multi-
ple), it is p(:), the target density for which samples are
desired , but the transition kernel is unknown. To gen-
erate samples from p(:), the methods �nd and utilize a
transition kernel P (x; dy) whose nth iterate converge to
p(:) for large n. The process is started at an arbitrary x
and iterated a large number of times. One of the useful-
ness MCMC method is the Metropolis-Hastings (M-H)
algorithm, the transition kernel for the M-H chain is
de�ned by:

PMH(x; dy) = q(x; y)�(x; y)dy

+

�
1�

Z
R

q(x; y)�(x; y)dy

�
�x(dy); (10)

where �(x; y) is the probability of move from x to y

and is given by:

�(x; y) =

(
min[p(y)q(y;x)

p(x)q(x;y)
; 1] if p(x)q(x; y) > 0

1 otherwise
:

(11)

Expression of �(x; y) ensures reversibility of PMH . The
second term of (10) denotes the possibly non-zero prob-
ability that the process remains at x. q(x; y) is the can-
didate generating density and is usually selected from
a family of distributions that requires the speci�cation
of such tuning as the location and scale.

An important family of candidate generating den-
sities is given by q(x; y) = q1(x � y) where q1(:) is a
multivariate density. The candidate y is thus drawn ac-
cording to the process y = x+ z, where z is called the
increment random variable and follows q1. This ran-
dom walk M-H algorithm is relevant in our case since
it does not require the precise location of the target
density, eq. (8). See [1] for a simple exposition of the
M-H algorithm.

As we deal with joint densities of size set propor-
tional to the polynomial order,M , a one \variable-at-a-
time" algorithm combiningM +1 updates is proposed.
The practical signi�cance of this principle is important
since it allows us to take draws in succession from each
of the kernels, instead of having to run each of the ker-
nels to convergence for every value of the conditioning
variable and it is usually far easier to �nd several con-
ditional kernels that converge to their respective condi-
tional densities than to �nd one kernel that converges
to the joint.



Suppose that there exists a conditional transition
kernel Pi(ai; dyija � faig) with the property that, for
a �xed value of a � faig, p

�(:ja� faig) is its invariant
distribution with density p(:ja� faig), i.e.:

p
�(dyija� faig) =

Z
Pi(ai; dyija� faig)p(:ja� faig)dai:

(12)

If we suppose that P0(a0; dy0ja � fa0g) produces y0
given a�fa0g and Pi(ai; dyijy0!i�1; a�fa0; : : : ; ai�1g)
produces yi given y0; : : : ; yi�1; a� fa0; : : : ; ai�1g then
the kernel formed by multiplying the conditional ker-
nels,Z

� � �

Z
M+1

P0(a0; dy0ja� fa0g) � � �

� PM (aM ; dyM jy0!M�1)p(a)da0 � � �daM (13)

has p�(dy0; � � � ; dyM ) as its invariant distribution.

Proof :Z
� � �

Z
M+1

P0(a0; dy0ja� fa0g) � � �PM (aM ; dyM jy0!M�1)

� p(a)da0 � � �daM

=

Z
� � �

Z
M

P1(a1; dy1ja� fa0; a1g) � � �PM (aM ; dyM jy0!M�1)

� p(a� fa0g)da1 � � � daM

�

Z
P0(a0; dy0ja� fa0g)p(a0ja� fa0g)da0

as p�(y0ja� fa0g) =
p(a� fa0gjy0)p

�(y0)

p(a� fa0g)

= p�(y0)

Z
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Z
M

P1(a1; dy1ja� fa0; a1g) � � �

� PM (aM ; dyM jy0!M�1)p((a� fa0gjy0)da1 � � � daM

= p�(y0)p
�(y1jy0)

Z
� � �

Z
M�1

P2(a2; dy2ja� fa0; a1; a2g) � � �

� PM (aM ; dyM jy0!M�1)p(a� fa0; a1gjy0; y1)da2 � � �daM

...

= p�(y0)p
�(y1jy0) : : : p

�(yM jy0!M�1)

= p�(y0; : : : ; yM ) �

3.2. Implementation

The one \variable-at-a-time" random walkM-H method
has been implemented following algorithm :

find the initial values: a(0)

for j = 0:::n� 1 do:

for k = 0:::M

generate yk from qk(yk � a
(j)

k )
generate uk from U(1,0)

�k(a
(j)

k ; yk) = minf1;
p(ykja

(j+1)
0

;:::;a
(j+1)

k�1
;a
(j)

k+1
;:::;a

(j)

M
)

p(a
(j)

k
ja
(j+1)
0
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(j+1)

k�1
;a
(j)

k+1
;:::;a

(j)

M
)
g

if uk � �k(a
(j)

k ; yk) then

a
(j+1)

k = yk
else

a
(j+1)

k = a
(j)

k

endif

end

end

where qk(yk� a
(j)

k ) is the candidate-generating density

of the kth phase parameter and has been chosen as
an independent uniform univariate distribution on the
interval [��k; �k].

Implementation gives rise to important remarks.
The initial values of the Markov chain must be cho-
sen in such a way that the probability of move �(a; y)
should be de�ned, i.e., p(a(0)) > 0 leading to

p(a(j)) > 0, 8j 2 [0; :::; n� 1]

The choice of �k a�ects the behavior of chain in at
least two dimensions : the acceptance rate (i.e. the
percentage of times a move to a new point is made)
and the region of the sample space that is covered by
a chain. If �k is too large, the acceptance rate is low
and if �k is too small, large number of iterations must
be necessary to traverse the support of the kth a pos-
teriori density. For the random walk M-H algorithm, a
high acceptance rate can signify that the random walk
moves too slowly on the considered support. In the
contrary, if the acceptance rate is small, the random
walk explores quickly the considered support.

Gelman and al. (1994) enjoin an acceptance rate
equal to 0.5 for models of dimension 1 and 2, the �k
can be deduced experimentally.

4. SIMULATION RESULTS

In order to estimate performances of the proposed me-
thod, computer simulationsusing polynomial phase sig-
nal of N=100 samples have been drawn for M=2 and
M=3.

With an acceptance rate around 0.5, �0 = 0:025,
�1 = 5:10�4, �2 = 5:10�6 for the 2nd order signal and
�0 = 0:025, �1 = 25:10�5, �2 = 5:10�6, �3 = 10�7 for
the third order one have been found.

In sampling process, the �rst 1000 draws have been
ignored and we collect the next 4000 (n=5000) to ap-
proximate the posterior distribution of p(aija � faig;
s; �; I). The posterior mean, standard deviation are
reported for the second case in the array below :



parameter mean standard deviation
a0 = -0.01 6.19e-3 2.38e-2
a1 = 0.04 3.7e-2 2.05e-3
a2 = 0.0005 5.8e-4 5.37e-4

a3 = -0.000005 -5.51e-6 3.7e-7

According to [5] and supported by obtained results,
relative error and support of posterior densities are al-
ways the largest for i = 0, and decrease monotonically
with i. For illustrating this remark, a posteriori dis-
tribution histograms for the parameters of polynomial
phase signal for M=2 are given (see �gure 1, 2, 3) for
a0 = �0:01, a1 = �0:03 and a2 = 0:0007.
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�gure 1 : Estimation of p(a0ja� fa0g; s; I)
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�gure 2 : Estimation of p(a1ja� fa1g; s; I)
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�gure 3 : Estimation of p(a2ja� fa2g; s; I)

In general, according to [3], Bayesian approach can
be applied only when parameters is random but, in
practice, it is often used for deterministic parameter es-
timation, since non-informative prior probability den-
sity does add any information to the problem (see 2.2).
Mean of the posterior density gives an optimalBayesian
estimator, called MMSE estimator, which minimize the
Mean Square Error (MSE) for random parameter. We

de�ne, thus, âi =
1

4000

P5000

j=1000 a
(j)

i .
In order to evaluate the performance of the pro-

posed approach, computer simulation using the second
order signal are drawn. The MSE of â2, â1 and â0
have been estimated on 100 realizations and di�erent
SNR (see �gure 4), and the Cramer-Rao lower bound
(CRLB), derived in [5], are given.

It can be noticed that, from a SNR of 5 dB, per-
formances are very close to the CRLB.

5. CONCLUSION

A Bayesian estimation of the parameters of noisy poly-
nomial phase signal has been proposed. This approach
gives at least three main advantages : it requires only
the a priori density form of the process allowing oth-
ers noise probability densities than the Gaussian one, it
works directly on the noisy samples, contrary to phase-
only algorithms and it gives a whole estimation of the
polynomial coe�cients.
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�gure 4 : 1/MSE for â0, â1 et â2
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