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ABSTRACT

It is proposed to jointly estimate the parameters of non-
Gaussian autoregressive (AR) processes in a Bayesian
context using the Gibbs sampler. Using the Markov chains
produced by the sampler an approximation to the vector
MAP estimator is implemented. The results reported here
used AR(4) models driven by noise sequences where each
sample is iid as a two component Gaussian sum mixture.
The results indicate that using the Gibbs sampler to ap-
proximate the vector MAP estimator provides estimates
with precision that compares favorably with the CRLBs.
Also briefly discussed are issues regarding the implemen-
tation of the Gibbs sampler for AR mixture models.

1. INTRODUCTION

Joint estimation of model parameters is of great interest in
the statistical analysis of signals. For analytical work ra-
tional transfer function models are very popular choices.
Within this class, autoregressive (AR) models are the most
popular since most physical systems are well described by
them. When the driving noise is Gaussian, many well
known approaches such as least squares, Yule-Walker, and
maximum likelihood have become standard methods to
estimate the unknowns [1]. However, in applications such
as the restoration of audio signals the adoption of a Gaus-
sian noise model is inadequate [2]. In cases like these more
complicated noise models are required to accurately repre-
sent the physical system.

An alternative to the Gaussian AR model is an AR
model driven by a noise process u where the un ' s are iid

as a Gaussian sum mixture. The general model form is,
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and the finite Gaussian sum mixture is expressed as,
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where 0 1< <λi and λi∑ = 1, and each f i is a Gaussian pdf

with parameters ( , )µ σi i
2 . A wide range of driving noise

models can be accommodated by choosing the parameters
of f appropriately. In this paper an AR(4) model driven by
a two “component” Gaussian sum mixture is used which
implies p =4 and k=2.  Thus (2) takes the form,

f u f u f u( ) ( ) ( ) ( ).= − +1 1 2ε ε                      (3)

Further, we use a contaminated noise model, so both
“component” distributions share a common mean, which is
assumed known, and the variances satisfy σ σ1

2
2
2<< .

In this work we investigate the use of a Markov Chain
Monte Carlo (MCMC) method called the Gibbs sampler to
jointly estimate the noise and process parameters [3].
MCMC methods are of growing interest to the signal proc-
essing community as they can be used where the likelihood
or posterior pdfs are intractable for algorithms requiring
either direct sampling or summary statistics of the distri-
butions. The principle difficulty arises due to the compli-
cated form of the likelihood and posterior distributions
under non-Gaussian stimulation of a linear model. The
Gibbs sampler greatly simplifies the joint estimation prob-
lem for non-Gaussian AR processes relative to other itera-
tive techniques, such as the expectation-maximization al-
gorithm and Newton-Raphson approaches, by directly gen-
erating samples from the posterior distribution p x( | )θ .

Also in the case of AR models driven by Gaussian sum
mixtures, an “information paradox” is reached for classical
Bayesian estimation approaches [5]. The paradox is, as
more data are acquired the estimator performance im-
proves, but at the same time can become impossible to
evaluate despite the availability of a closed form expres-
sion. Using the Gibbs sampler and an alternative form of
the “missing data” approach proposed in [2] and [4] these
difficulties are mitigated and very good estimation per-
formance can be achieved.



2. PROBLEM STATEMENT

The problem is one of parametric modeling in a Bayesian
context using an observed data vector x  to jointly estimate

all the model parameters, where only the process order and
number of mixands are known.

It is assumed that the observed data were generated by
a linear asymptotically stationary real AR process (1) of
known order, driven by iid Gaussian mixture noise (3) with
two "components". The assumption of asymptotic station-
arity implies the poles of the process are inside the unit
circle in the z-plane. This imposes constraints on the pos-
sible values of the process structure parameters for an
AR(p) system. It is assumed without any loss in generality,
that the means of the individual distributions of the mix-
ture are equal to zero.

3.  PRIOR SELECTION

Standard engineering assumptions in specifying the prior
pdfs of the unknowns is used with the goal of being unin-
formative in the sense of Jeffreys’ priors [4]. Independence
between the noise pdf and the AR structure parameters is
assumed. The noise model unknowns are the mixture pa-
rameter ε and the variances of f1 and f2 . The mixture

parameter ε is assumed independent of the variances with a
uniform pdf for ε ∈( , . )0 0 25 . Assuming ε ∈( , . )0 0 25  im-
plies that less than 25 % of the noise samples are from the
contaminating distribution f2 . When modeling physical

systems ε<.1 are common.
The variances are dependent on each other to the ex-

tent that at each iteration we require σ σ1
2

2
2<  to avoid some

of the identifiabilty issues encountered with mixtures [5].
To be somewhat noninformative we assume a joint prior on
the variances proportional to ( / ) ( )const Uσ σ σ σ1
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where the range of values are bounded by some means, and
the function U is the unit step function.

Lastly, given the model specifications the uninforma-
tive joint prior is defined asp a const( ) ∝  for all a  yielding

stable AR models. Since real AR models are assumed, the
structure parameters a  are dependent (related) on each

other, and synthesizing samples from this distribution has
required a novel approach using the Levinson recursion
equations [6]. Therefore the prior used is of the form,
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where Θ is defined by the considerations given above.

4. BACKGROUND ON THE GIBBS SAMPLER

Let ϑ , be the vector of unknowns with components

ϑ ϑ ϑ1 2, , ,K k , and that the objective is to obtain summary

inferences for the joint posterior p x p xk( | ( , , | )ϑ ) = ϑ ϑ1K .

This problem can be recast into one of iterative sampling
from appropriate distributions to produce a Markov chain.
The distributions controlling the evolution of the Markov
chain are called the full conditional densities and are given
by p x j i i ki j( | , , ) , ,ϑ ϑ ≠ =for 1K . These functions are

easily determined for each ϑi , using the form

p x p x p( |ϑ ) ( | ) ( )∝ ϑ ϑ . Using Bayes’ theorem and the

chain rule for conditional densities the details of the deri-
vation are straightforward in this case.

The Gibbs algorithm is seeded with a set of arbitrary
values ϑ ϑ1

0 0( ) ( ), ,K k obtained from the parameter space Θ,

using the restrictions and prior pdfs described above. Then
the following iterative procedure is executed,
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and so on, terminating at the last iteration t .

5. IMPLEMENTATION OF THE GIBBS SAMPLER

In each iteration the random draw can be performed using
a variety of methods [7]. One straightforward method cir-
cumventing many of the difficulties encountered with ran-
dom variate generation techniques is to use the weighted
resampling technique [8]. It directly implements sampling
from conditional densities, however it is very computa-
tionally intensive. An alternative approach is to adopt a
missing data structure to build a hierarchical model and
use “conjugate” priors to greatly simplify the sampling
from the full conditional densities. However, although this
method allows efficient implementation of the sampling
using well known techniques it produced poor estimation



performance. Therefore a combination approach is pro-
posed which uses a modified “missing data” approach for
the AR coefficients and retains the weighted resampling
approach for the noise model parameters.

The missing data approach proposed in [2] and [4]
first estimates the noise sequence samples using current
AR process coefficient estimates, and then attempts to
probabilistically classify each sample to only one compo-
nent of the mixture based on likelihoods. The result of the
classification produces a multivariate normal pdf of order p
which can easily be sampled. The covariance matrix is
diagonal, with the values on the diagonal being the current
estimates of the component distribution variances. How-
ever, this approach tends to underestimate membership
into the contaminating mixture component which in turn
biases the noise parameter model estimates.

The proposed approach also produces a multivariate
normal of order p, with a diagonal covariance matrix. But
now the diagonal elements are formed by “blending” the
individual variance estimates in proportion to the likeli-
hoods. This method coupled with the weighted resampling
on the noise parameters was able to approach the CRLBs
while avoiding the introduction of bias. In the case of vec-
tor (joint) sampling of parameters, the scalar draws shown
in Section 4 become vector draws [2].

As the number of iterations t grows, the resulting pa-
rameter vector ϑ( )t  in each chain is a sample from a distri-

bution asymptotically approaching the joint conditional pdf
of the unknown parameters given the data, namely p x( )ϑ .

The exact point in where this occurs is subject to some
interpretation and depends on the concepts of convergence
of the Markov chains. A plethora of convergence diagnos-
tics have been proposed in the literature [9].

In the present case the vector MAP estimator has been
chosen, and as such convergence of the Markov chains are
not required. However, convergence will in general indi-
cate that the main mode(s) have been found. The conver-
gence diagnostic chosen for this application is based on
normal theory and is outlined in [10]. Basically this diag-
nostic compares the variances of each individual Markov
chain being simulated for a particular experiment, and
compares them to the cross chain variances via a scale re-
duction factor. When the factor is suitably small conver-
gence is detected.

Using multiple independent chains in the parameter
space, a random search type algorithm is implemented. In
the simulations performed, 5 chains each with 100 itera-
tions were used. The 100 iteration limit was set to match
conditions imposed in [11]. The approximation to the
(global) vector MAP was implemented by searching across

all the chains for the sample with the highest posterior
density value. To help the search for a global MAP one of
the chains is seeded with the Burg estimates of the coeffi-
cients.

6. PERFORMANCE RESULTS

As stated, the vector MAP was approximated using 5 inde-
pendent Markov chains of 100 iterations in each experi-
ment. The true (global) vector MAP value is approximated
by the simulated value across all the chains with the high-
est posterior density value. An experiment is defined as
generating an observed data sequence x  of 1000 samples

using the given model parameters, and running the Gibbs
sampler as specified. The model parameters for the Gaus-
sian mixture areε =.1,σ1

2 1=  and σ2
2 100= . The noise se-

quences generated are used to excite two different AR(4)
models. The first is a narrow band system, and the second
is a wide band system. To gather sufficient data on the
performance of the algorithm proposed for both the wide
band and narrow band AR models, 250 experiments have
been performed. The estimator performance is shown in
the tables below.

For the narrow band case (Figure 1) the results in Table
1 show the performance of the estimator for 250 experi-
ments. The sample variance of the approximate vector
MAP is comparable to the CRLBs and some bias in the
variance estimates may be evident. With the limited num-
ber of experiments available to date it is possible that the
difference between the estimates and true values is not due
to bias, but to statistical fluctuation in the estimates. In
addition the estimator precision for a4 and ε are somewhat

disappointing relative to the other parameters. The high
variance relative to the CRLBs is currently attributed to the
sensitivity of these estimates to small perturbations in the
other model parameters. However, increasing the number
of iterations in each chain may remedy these problems.

The performance in the wide band case (Figure 2) is
shown in Table 2. Here the sample variance of the estima-
tor is again comparable to the CRLBs, and possibly some
bias in the variance estimates is evident. The increase in
the estimator variances from the narrow band case is cur-
rently attributed to the wide band nature of the system.
That is the noise spikes from the contaminating mixture
are dissipated quickly and do not provide the ringing at-
tributed with providing the higher precision estimates in
the narrow and case [11]. Again more experiments are
necessary to resolve whether bias is present.

The performance of the Gibbs approach presented here
is far superior to least squares approaches and competitive



to the MLE approach presented in [11] for both wide and
narrow band cases.

7. CONCLUSIONS

The simulations shown here indicate that the Gibbs meth-
odology can be an effective tool for joint estimation of
model parameters of non-Gaussian AR systems in a Baye-
sian context. However, additional research work is required
to improve the estimator performance to produce precision
closer to the CRLBs. Currently, it is felt that more signifi-
cant exploration of the posterior parameter space will yield
more precise results. Thus increasing the number of
chains, iterations per chain, or the number of samples used
in the weighted bootstrap sampling procedure can help in
this regard. This will increase the computational load, but
constantly increasing computing power lessens this con-
cern. Lastly, this method would also be of interest in the
challenging problem of joint estimation for non-Gaussian
moving average models.

True
Value

MAP
Sample
Mean

CRLB MAP
Sample

Variance
a1

 2.7600 2.7602 1.6278e-5 1.9299e-5

a2
-3.8090 -3.8091 8.0163e-5 10.666e-5

a3
2.6540 2.6539 8.0163e-5 11.610e-5

a4
-0.9240 -0.9238 1.6278e-5 2.7204e-5

εε 0.1000 0.1002 30.869e-6 72.486e-6

σσ 1
2 1.0000 0.9853 2.8944e-3 3.5897e-3

σσ 2
2 100.00 98.125 237.47 250.94

Table 1: Estimator performance for narrow band system.

TRUE
Value

MAP
Sample
Mean

CRLB MAP
Sample

Variance
a1

1.3520 1.3498 1.0491e-4 1.3015e-4

a2
-1.3380 -1.3354 2.5961e-4 3.5653e-4

a3
0.6620 0.6587 2.5961e-4 3.1529e-4

a4
-0.2400 -0.2378 1.0491e-4 1.4966e-4

εε 0.1000 0.1010 30.869e-6 64.250e-6

σσ 1
2 1.0000 0.9890 2.8944e-3 3.7579e-3

σσ 2
2 100.00 101.92 237.47 337.78

Table 2: Estimator performance for wide band system.
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Figure 1: Typical observed data for the narrow band model
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 Figure 2: Typical observed data for the wide band model.
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