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ABSTRACT where 0<\ <1and yA =1, andeach f; is a Gaussian pdf

with parameters(y,0). A wide range of drivingnoise

modelscan beaccommodated by choositige parameters
of f appropriately. In this paper &R (4) model driven by

a two “component” Gaussian sum mixture is used which
impliesp =4 andk=2. Thus (2) takes the form,

It is proposed to jointly estimatine parameters of non-
Gaussian autoregressive (AR) processes iBagesian
context using th&ibbssampler. Using the Markov chains
produced by the sampler an approximation to wbetor
MAP estimator is implementedhe results reported here
used AR(4) models driven by noise sequences where each
sample is iid as &awo component Gaussian sum mixture.
The results indicat¢hat using theGibbs sampler to ap-
proximate thevector MAP estimator provides estimates Further, weuse a contaminated noise model, so both

f(u) =(1-¢) f,(U)+e (V. 3

with precisionthat compares favorablyith the CRLBs. ~ “component” distributions share a commmean, which is
Also briefly discussedire issuesregarding the implemen- assumed known, and the variances satisfy<<o?.
tation of the Gibbs sampler for AR mixture models. In thiswork we investigatéhe use of a Markohain
Monte Carlo (MCMC) method called tti@bbssampler to
1. INTRODUCTION jointly estimatethe noiseand process parameters [3].

MCMC methods are of growing interest to the signal proc-
Joint estimation of model parameters is of great interest iressing community as thepn beused wher¢he likelihood
the statistical analysis of signals. For analytiwark ra-  or posterior pdfsare intractabldor algorithmsrequiring
tional transfer function modelare very popular choices.  either direct sampling or summary statistics of the distri-
Within this classautoregressive (AR) modedse themost  putions. The principlelifficulty arises due tdahe compli-
popular since most physicaystemsarewell described by  cated form of the likelihoocand posterior distributions
them. When the driving noise is Gaussian, mam®ll  under non-Gaussian stimulation of a lineaodel. The
known approaches such as least squares, Yule-Walker, andibbssampler greatly simplifies the joint estimation prob-
maximum likelihood havebecomestandard methods to |em for non-Gaussian AR processes relativetter itera-
estimate the unknowns [1However, inapplications such  tive techniques, such dse expectation-maximization al-
as the restoration of audio signals the adoption of a Gausgorithm andNewton-Raphson approaches, by directly gen-
sian noise model is inadequate [2]. In cases like these morgrating samples from the posterior distributip(®| x) .
complicated noise modedse required taccuratelyrepre- Also in the case of AR models driven by Gaussian sum

sent the phys"’"?" system. . . mixtures, an “information paradox” is reached classical
An a_Iternatlve to'the Gaussian AR mo‘?'e' IS an AR Bayesian estimation approaches [bhe paradox is, as
model driven by a noise processvhere theu,’s are iid more data are acquired the estimator performance im-
as a Gaussian sum mixture. The general model formis,  proves, but athe same time camecome impossible to
_ b 1 evaluate despite the availability ofctosed form expres-
%n = jélal' $-p T 1) sion. Using theGibbssampler and an alternatiferm of
the “missing data” approagtroposed in [2hnd[4] these
‘ difficulties are mitigated andery goodestimation per-
f(u) = izl)\i f (u) ) formance can be achieved.

and the finite Gaussian sum mixture is expressed as,



2. PROBLEM STATEMENT 4. BACKGROUND ON THE GIBBS SAMPLER

The problem is one of parametric modeling iBayesian  Let 9, be thevector of unknowns with components
context using awmbservediatavector x to jointly estimate 9,9,
all the model parameters, wharely the process order and
number of mixands are known.

It is assumedhat theobservediatawere generated by
a linearasymptotically stationaryeal AR process (1) of
known order, driven by iid Gaussian mixture noise (3) with
two "components”. The assumption agymptotic station-
arity implies thepoles ofthe processare inside the unit
circle in the z-plane. Thignposes constraints dhe pos- easily determined for eachd;, using the form

sible values ofthe process structure parameters for an pg|x) O p(%9) p8). Using Bayes' theorem and the
@]Rgpt)hsystem. It 'Sf :t':\hssqmde.d.(\j/vg;otu_tbart].y loss flThgengrallty,Chain rulefor conditional densitiethe details of the deri-
‘ at tnhe mea?f of the individueistributions ot the MiX-—yation are straightforward in this case.

ure are equal to zero. The Gibbs algorithm isseededwith a set of arbitrary
values 8{?,...,9{% obtained from the parametspace©,
using the restrictionand priorpdfs described abovéhen
Standard engineering assumptionsspecifyingthe prior  the following iterative procedure is executed,

pdfs ofthe unknowns isised withthe goal of being unin-

formative in the sense deffreys’priors [4]. Independence draw 8{” from p(8,|x,8,”,...8{?),

betweenthe n0|sepdf and the ARstructure parameters is draw 99 from p(®,|x,92,92,...9),

assumed. The noise model unknovame the mixture pa-
rametere and thevariances of f,and f,. The mixture

parametekt is assumed independent of the variances with a

..,9,, and that thebjective is toobtain summary
inferences fothe joint posteriorp(3|x) = p(4,... .9 [X).

This problemcan be recast into one of iterative sampling
from appropriate distributions to produce a Markiain.
The distributions controlling thevolution ofthe Markov
chain are called thilll conditional densitiesind aregiven

by p(®|x,9,;,j#i) fori=1,... k. These functions are

3. PRIOR SELECTION

draw 9 from p(9,|x,9®,98,...9%),

uniform pdf for € 0(0,0.25 . Assuminge [J(0,0.25 im- draw 8 from p(3;|x.85,...8,),
pliesthatlessthan 25 % of theoise samples are from the :
contaminating distributionf,. When modeling physical draw 8@ from p@,|x92 82 ,.9%2)

systemg<.1 are common.
The variances are dependent on each other to the ex-
tent that at each iteration we requirg <o to avoid some

of the identifiabiltyissues encountered with mixtures [5].
To be somewhat noninformative we assume a joint prior on draw 8{7 from p(9, [x,9{",9{",...9{%),

the variances proportional tocanst ofos Ujof{-o0? ,) and so on, terminating at the last iteration
where the range of values are bounded by soeens, and

draw 9 from p(9,|x,9{",...9"),

the functionU is the unit step function. 5. IMPLEMENTATION OF THE GIBBS SAMPLER
Lastly, giventhe model specifications the uninforma- _ _ _
tive joint prior is defined ap(a) Oconstfor all a yielding In each iteration the random draw can be performed using

a variety of methods [7]. One straightforward method cir-
cumventing many of thdifficulties encountered with ran-
dom variate generation techniques is to teeweighted
resampling technique [8]. It directly implements sampling
from conditional densities, however it i&ry computa-
tionally intensive. An alternative approach is to adopt a
missing data structure to build a hierarchical model and

stable AR models. Since real ARodelsare assumed, the
structure parametera are dependent (related) on each
other, andsynthesizing samples frothis distribution has
required a novel approach usitige Levinson recursion
equations [6]. Therefore the prior used is of the form,

p(a.g,02,02)0(const/a02) Uo2 -o2) 09 0O (4) use “conjugate” priors to greatly simpliffne sampling
from the full conditional densitie$iowever,although this
where® is defined by the considerations given above. method allows efficient implementation die sampling

usingwell known techniques it produced poor estimation



performance. Therefore a combination approach is proall the chainsfor the sample with the highest posterior

posed which uses a modified “missidgta” approach for
the AR coefficientsand retains theveighted resampling
approach for the noise model parameters.

The missing data approagitoposed in [2]and [4]
first estimates the noissequence samples usitgrrent
AR process coefficient estimatesnd therattempts to
probabilistically classify each sample to only awenpo-
nent of the mixturdased on likelihoodsThe result of the
classification produces a multivariate normal pdf of ogger
which caneasily be sampledThe covariancenatrix is
diagonal, with thevalues orthe diagonal being the current

density value. To helthe searclior a global MAP one of
the chains iseededvith the Burg estimates of treoeffi-
cients.

6. PERFORMANCE RESULTS

As stated, th@ector MAP was approximatedsing 5 inde-
pendent Markov chains of 100 iterations in each experi-
ment. The true (globaljector MAP value is approximated
by the simulated value acroah the chains with the high-

est posterior density value. An experiment is defined as

estimates of the component distribution variances. How-generating ambserveddatasequencex of 1000 samples
ever, this approach tends to underestimate membershising the given model parameteasid running th&ibbs

into the contaminating mixture component whichtimn
biases the noise parameter model estimates.

The proposed approach also produces a multivariate

normal of ordemp, with a diagonal covarianaeatrix. But
now the diagonal elements di@med by “blending” the
individual variance estimates in proportion to the likeli-
hoods.This methodcoupled withthe weighted resampling
on the noise parametenss able to approache CRLBs
while avoiding the introduction of bias. In thase of vec-
tor (joint) sampling of parameters, the scalar dratw@wn

in Section 4 become vector draws [2].

As the number of iterationsgrows,the resulting pa-
rameter vectow® in each chain is a samgdi®m a distri-
bution asymptotically approaching the joint conditional pdf
of the unknown parameters given the data, nanpeﬂg() .

The exact point in wheréhis occurs is subject to some
interpretation andlepends on theoncepts of convergence
of the Markov chains. A plethora obnvergence diagnos-
tics have been proposed in the literature [9].

In the presentasethe vector MAP estimatohasbeen
chosenand assuch convergence tfie Markov chains are
not required.However, convergenceill in general indi-
catethat the mairmode(s) have been fountlhe conver-
gence diagnostic chosen fdris application isbased on
normaltheoryand isoutlined in [10]. Basicallythis diag-
nostic compares the variances of each individdatkov
chain being simulated for garticular experiment, and
compares them to therosschain variancesia a scale re-
duction factor. When the factor suitably small conver-
gence is detected.

sampler as specifiedhe model parametefsr the Gaus-
sian mixture are =1,07 =1 and o7 =100. The noise se-

guences generateate used to excite twalifferent AR(4)
models. The first is a narrow basgstem,and thesecond
is a wideband system. Ta@ather sufficient data on the
performance of the algorithmproposed for botlthe wide
band and narrow band ARodels, 250 experiments have
been performedThe estimator performance is shown in
the tables below.

For the narrow band case (Figure 1) the resulfabile
1 showthe performance of the estimafor 250 experi-
ments. The sample variance of the approximagetor
MAP is comparable tehe CRLBs and some bias in the
variance estimates may be evidemith the limited num-
ber of experiments available to date it is possibk the
difference betweethe estimateand truevalues is not due
to bias, but to statistical fluctuation in the estimates. In
addition the estimator precisidor a, ande aresomewhat

disappointing relative to the other parameters. Tigh
variance relative to the CRLBs is currently attributed to the
sensitivity of these estimates to small perturbations in the
other model parameterslowever,increasing the number
of iterations in each chain may remedy these problems.
The performance in thwide band case (Figure 2) is
shown in Table 2. Herthe sample variance of the estima-
tor is againcomparable to th€RLBs, and pssibly some
bias in the variance estimates is evident. The increase in
the estimator variances from the narrow baade is cur-
rently attributed to thewvide band nature of theystem.
That is thenoise spikes from the contaminating mixture

Using multiple independent chains in the parameterare dissipatedjuickly and do noprovidethe ringing at-

space, a random seartpe algorithm is implemented. In

tributed with providing thehigher precision estimates in

the simulations performed, 5 chains each with 100 iterathe narrow andcase [11].Again more experiments are

tions were usedThe 100 iteration limitvas set tanatch
conditions imposed in [11]The approximation to the
(global) vector MAP was implemented $garchingacross

necessary to resolve whether bias is present.
The performance of th&ibbsapproach presented here
is far superior to least squares approaarescompetitive



to the MLE approach presented in [¥&f both wide and
narrow band cases.

7. CONCLUSIONS

The simulations shown here indicdbat theGibbs meth-
odology can be areffective tool forjoint estimation of
model parameters of non-Gaussian &Rtems in a Baye-
sian context. However, additional research work is requirec
to improve the estimator performancepr@duce precision
closer tothe CRLBs. Currently, it is feltthat more signifi-
cant exploration of the posterior parametpace willyield
more precise results. Thus increasing the number o
chains, iterations per chain, or the numbesahples used

in the weighted bootstrap sampling procedtaa help in
this regard. This will increase the computational load, but
constantly increasing computingower lessenshis con-
cern. Lastly,this methodwould also be ofnterest in the
challenging problem of joint estimatidor non-Gaussian
moving average models.
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Figure 1: Typical observed data for the narrow band model
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