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ABSTRACT

This paper deals with the important problem of parame-
ter estimation in the presence of bounded data uncertain-
ties. Its recent closed-form solution in [1] leads to more
meaningful results than alternative methods (e.g., total
least-squares and robust estimation), when a priori bounds
about the uncertainties are available. The derivation in [1]
requires the computation of the SVD of the data matrix
and the determination of the unique positive root of a non-
linear equation. This paper establishes the existence of a
fundamental contraction mapping and uses this observa-
tion to propose an approximate recursive algorithm that
avoids the need for explicit SVDs and for the solution of
the nonlinear equation. Simulation results are included to
demonstrate the good performance of the recursive scheme.

I. INTRODUCTION

The central problem in estimation is to recover, to good
accuracy, a set of unobservable parameters from corrupted
data. Several optimization criteria have been used for es-
timation purposes, but the most important, at least in the
sense of having had the most applications, are criteria that
are based on quadratic cost functions. The most strik-
ing among these is the linear least-squares criterion, which
enjoys widespread popularity in many diverse areas as a re-
sult of its attractive computational and statistical proper-
ties. But many alternative optimization criteria have been
proposed over the years in order to improve the perfor-
mance of standard least-squares estimators in the presence
of data uncertainties (e.g., [2-4]). Among these criteria we
mention regularized least-squares, Ridge regression, total
least-squares, and robust (or H1) estimation. They all al-
low, in one way or another, to incorporate some a priori
information about the unknown parameter into the prob-
lem statement. Nevertheless, they still may unnecessarily
over-emphasize the e�ect of noise and of the uncertainties
and can, therefore, lead to very conservative results.

In [1], a new formulation for parameter estimation in
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the presence of bounded data uncertainties has been posed
and solved. The new method is especially useful when
the measured data and the used model are uncertain and

when a priori bounds on the uncertainties are available. In
this way, the new problem formulation leads to solutions
that are more meaningful especially when compared with
other methods such as total least-squares and robust esti-
mation. The reason for the more meaningful results is that
the new formulation guarantees a robust performance with
respect to uncertainties that are known to lie within cer-
tain bounds. This is in contrast to earlier robust designs
that try to achieve a robust performance for any possible
uncertainty and can therefore lead to overly conservative
solutions.

The solution in [1] requires the computation of the SVD
of a data matrix and the determination of the unique pos-
itive root of a nonlinear equation. In this paper, we show
that some fundamental equations in [1] induce a contractive
mapping. By invoking the Contraction Mapping Theorem
[5], we further show that the unique �xed point of the map-
ping can be approximated to good accuracy via an iterative
scheme. In so doing, we derive an approximate recursive
scheme, similar in nature to RLS (recursive least-squares),
that allows us to update the solution of the new estimation
problem without the need for explicit SVDs and for the
solution of the nonlinear equation.

II. PROBLEM FORMULATION

In [1], the following new estimation problem has been
formulated and solved; it allows a priori bounds on the un-
certain data to be explicitly incorporated into the problem
formulation.

Let A 2 Rm�n be a given full rank matrix with m � n

and let b 2 Rm be a given vector. The quantities (A; b)
are assumed to be linearly related via an unknown vector
of parameters x 2 Rn, b = A � x + v, where v 2 Rm

explains the mismatch between A�x and b. We assume that
the \true" coe�cient matrix is A + �A, and that we only
know an upper bound on the perturbation �A, say k�Ak2 �
�: Likewise, we assume that the \true" observation vector
is b + �b, and that we know an upper bound �b on the



perturbation �b, say k�bk2 � �b. The notation k�k2 denotes
either the 2�induced norm of its matrix argument or the
Euclidean norm of its vector argument.
We pose the problem of �nding an estimate x̂ that per-

forms \well" for any possible perturbation (�A; �b). That
is, we would like to determine, if possible, an x̂ that solves

min
x̂

�
max

k�Ak2��; k�bk2��b
k (A+ �A) � x̂� (b+ �b)k2

�
: (1)

Any value that we pick for x̂ would lead to many residuals
norms, k (A+ �A)�x̂�(b+�b)k2; one for each possible choice
of A in the disc (A+�A) and b in the disc (b+�b). We want
to determine the particular value(s) for x̂ whose maximum
residual is the least possible. It turns out that this problem
always has a unique solution except in a special degenerate
case in which the solution is nonunique.
The problem also admits an interesting geometric formu-

lation. For this purpose, and for the sake of illustration,
assume we have a unit-norm vector b, kbk2 = 1, with no
uncertainties in it (�b = 0; it turns out that the solution
does not depend on �b). Assume further that A is simply a
column vector, say a, with � 6= 0, and consider (1) in this
setting:

min
x̂

�
max

k�ak2��
k (a+ �a) � x̂� bk2

�
:

The situation is depicted in Fig. 1. The vectors a and b

are indicated in thick black lines. The vector a is shown in
the horizontal direction and a circle of radius � around its
vertex indicates the set of all possible vertices for a + �a.
It can be veri�ed that the solution can be obtained by
drawing a perpendicular from b to the lower tangential line
�1. The segment r1 denotes the optimum residual. More
details can be found in [1].
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Fig. 1. Geometric construction of the solution for a simple example.

III. AN ALGEBRAIC SOLUTION

It can be veri�ed that problem (1) reduces to the equiv-
alent minimization problem:

min
x̂

(kA � x̂� bk2 + � � kx̂k2 + �b) ; (2)

where the cost function L(x̂) = kA � x̂�bk2+� � kx̂k2+�b is
convex in x̂. Note that it involves the Euclidean norms of
certain vectors rather than their squared Euclidean norms
(as in regularized least-squares problems). The following
theorem summarizes the main result in [1].

Theorem 1. Let A 2 IRm�n, with m � n, be full rank,

and b 2 IRm. Assume that b does not belong to the column

span of A. Then the solution of the min-max estimation

problem can be constructed as follows. Introduce the SVD

of A: A = U �
�
�T 0

�T
� V T ; partition the vector UT b

into UT � b =
�
cT dT

�T
; where c 2 Rn and d 2 Rm�n,

and introduce the secular equation

� = f(�) (3)

where

f(�) = �

n
k d k22 + �2� k

�
�2 + �I

��1
c k22

o1=2
k � (�2 + �I)

�1
c k2

: (4)

De�ne � = kAT bk2
kbk2

. Then

1. If � � � , the unique solution of (1) is x̂ = 0.
2. If � < � , the secular equation (3) has a unique positive

solution �̂ and the unique solution of (1) is given by

x̂ =
�
ATA+ �̂I

��1
AT b : (5)

It also follows that �̂ is equal to

�̂ = �
k Ax̂� b k2
k x̂ k2

: (6)

Remark. If b belongs to the column space of A, the solu-
tion of problem (1) is only slightly more involved (see [1]
for details). The basic task, however, is still to �nd the
unique positive solution of the secular equation (3).

According to Theorem 1, the solution of the min-max
estimation problem (1) requires the determination of the
unique positive solution �̂ of the secular equation (3). This
task can be performed within any desired precision by us-
ing, for example, a bisection search method. This proce-
dure may, however, require a large number of evaluations
of the function f(�) since an a priori upper bound on �̂ is
not available.
We now show that a good approximation for �̂ can be

obtained by alternatively iterating the map de�ned by f(�).
This will lead us to propose a recursive scheme for updating
the parameter estimates as well.

IV. A FUNDAMENTAL CONTRACTION

MAPPING

De�ne the recursive equation

�(i+1) = f(�(i)) ; �(0) = initial condition: (7)



The following central result can be established by invoking
the Contraction Mapping Theorem [5].

Theorem 2. Assume � < � . For any positive initial value

�(0), it holds that limi!1 �(i) = �̂, where �̂ is the unique
positive solution of the secular equation (3).

Proof: In view of Thm. 1, the condition � < � guarantees
the existence of a unique �̂ > 0 satisfying �̂ = f(�̂). More-
over, it can be veri�ed that f(0) > 0, f(�) is continuous
in �, and f 0(�) � 0 for any � � 0 (the proof of this last
property involves some tedious calculations that we omit
here).
It then follows that f(�) � � for every � � �̂. Indeed, if

for some ~� < �̂ we have f(~�) < ~�, and since f(0) > 0, we
conclude by the continuity of f that there must exist an
0 < �� < ~� < �̂ such that f(��) � �� = 0. This contradicts
the fact that �̂ is the only positive root of f(�)� � = 0.
Consequently, for any initial condition �(0) < �̂ we ob-

tain that the resulting �(i) is a nondecreasing sequence. Let
I be an index such that �(I) � �̂. The fact that f(�) is
a nondecreasing function shows that �(I+1) = f(�(I)) �
f(�̂) = �̂ and, hence, �(I+1) � �̂. This establishes
that �(i) � �̂ for all i, which means that the sequence
f�(i)g is bounded from above and therefore converges to
some point �(1) � �̂. By continuity of f , we must have
�(1) = f(�(1)) and, by uniqueness of the positive root �̂
we conclude that �(1) = �̂.
Similar arguments can be used to establish the conver-

gence of the sequence f�(i)g to �̂ for any initial condition
�(0) > �̂.

We should note that the secular equation (3) is obtained
by substituting (5) into (6). The iterative scheme (7) then
corresponds to a successive approximation procedure with
repeated applications of the function f . Alternative iter-
ative schemes can be developed by combining expressions
(5) and (6) di�erently. We forgo the details here.
Theorem 2 suggests that recursion (7) can be used to

approximate the exact solution of the min-max estimation
problem. Starting from any �(0) > 0 and computing p it-
erations of the map (7), we can approximate x̂ in (5) with
x(p) = (ATA + �(p)I)�1AT b. Several simulations on ran-
domly generated data (see further ahead) have shown that
in general good approximations can be obtained with very
few iterations. This is particularly useful in recursive esti-
mation contexts, as we explain in the next section.

V. RECURSIVE MIN-MAX ESTIMATION

WITH BOUNDED DATA UNCERTAINTIES

Consider the linear regression model

yt = (at + �at)
Tx+ vt ; t = 1; 2; : : : (8)

where yt 2 IR is the output, (at+ �at) 2 IRn the regression
vector, x 2 IRn the unknown parameter vector, and vt 2 IR
a measurement noise a�ecting the output. Assume that the

regression vector is not known exactly, while at and yt are
observed and a bound on the perturbation �at is available.
In particular, a time-variant upper bound on the 2-induced
norm of the matrix

�At =

2
64

�aT1
...

�aTt

3
75 (9)

is known, i.e.k �At k2� �t; where f�tg is a sequence of posi-
tive real numbers. Also, bt = colfy1; : : : ; ytg. The recursive
min-max estimation problem that we are interested in is to
recursively time-update the solutions x̂t of:

min
xt

max
k�Atk2��t

k (At + �At)xt � bt k2 (10)

De�ne �t =
kAT

t
btk2

kbtk2
: Let fx̂tg

N
t=t0

denote the successive

solutions for t = t0; : : : ; N of problem (10), where we
are assuming that each bt does not belong to the col-
umn space of the corresponding At. De�ne also ht+1 =�
AT
t+1At+1 + �̂tI

��1
AT
t+1bt+1. Comparing with the ex-

pression for x̂t+1 =
�
AT
t+1At+1 + �̂t+1I

��1
AT
t+1bt+1; we

see that ht+1 approximates x̂t+1 by using �̂t instead of
�̂t+1.

Theorem 3. At any particular time instant t, given x̂t, we

can update it to x̂t+1 as follows: x̂t+1 = 0 if �t+1 � �t+1.
Otherwise,

ht+1 = x̂t +
Ptat+1

1 + aTt+1Ptat+1
(yt+1 � aTt+1x̂t) ;

x̂t+1 = [I � (�̂t+1 � �̂t)Pt+1]ht+1 ;

P�1t+1 = P�1t + at+1a
T
t+1 + (�̂t+1 � �̂t)I ; (11)

where f�̂t; �̂t+1g are the unique positive solutions of �t =
ft(�t) and �t+1 = ft+1(�t+1).

Proof: De�ne P�1t = AT
t At + �̂tI . Then, since

AT
t+1At+1 = AT

t At + at+1a
T
t+1, we obtain (11). Moreover,

by Thm. 1, x̂t+1 = Pt+1A
T
t+1bt+1. But since AT

t+1bt+1 =
AT
t bt + at+1yt+1, we obtain by applying the matrix inver-

sion formula to (11) the desired time-update expression for
x̂t+1.

The recursive algorithm of Thm. 3 still requires the com-
putation of the unique positive solution �̂t of the secular
equation equation (3) at each time instant t. This task can
be avoided if we replace the exact solution �̂t by an ap-
proximate solution, say �t, that we obtain via an iterative
scheme.
Suppose that at time t an approximation �t of �̂t is avail-

able. Then, one can consider computing a �xed number,
say p, of iterations of the map

�(i+1) = ft+1(�
(i)) (12)

with initial condition �(0) = �t, and then choose �t+1 =

�
(p)
t+1 as an approximation for the exact value �̂t+1. In



particular, if we choose p = 1, we obtain a recursive relation
for updating the approximations in time:

�t+1 = ft+1(�t): (13)

This expression can be further reworked as follows. Let
xt = (AT

t At + �tI)
�1AT

t bt be the approximation of x̂t

at time t. De�ne ht+1 =
�
AT
t+1At+1 + �tI

��1
AT
t+1bt+1:

Then, since f in Thm. 1 is obtained by substituting (5)
into (6), the map (13) can be written as

�t+1 = ft+1(�t) = �t+1
k At+1ht+1 � bt+1 k2

k ht+1 k2
(14)

where the dependence on �t is implicit in ht+1. De�ning
P t = (AT

t At + �tI)
�1 and following the proof of Thm. 3,

we get

ht+1 = xt +
P tat+1

1 + aTt+1P tat+1
(yt+1 � aTt+1xt) : (15)

A fully recursive expression of (13) can be obtained by
substituting (15) into (14), and taking into account that
xt = P tA

T
t bt.

Iterative Min-Max Algorithm.Set xt0 = x̂t0 and �t0 =
�̂t0 , and let P t0 = (AT

t0
At0 + �t0I)

�1, z2t0 = kbt0k
2
2. For

t = t0; : : : ; N , do

ht+1 =

(
xt +

P tat+1

1 + aTt+1P tat+1
(yt+1 � aTt+1xt)

)

z2t+1 = z2t + y2t+1

pt = h
T

t+1(P
�1

t + at+1a
T
t+1 � �tI)ht+1

qt = 2h
T

t+1(P
�1

t xt + at+1yt+1)

�t+1 =
�t+1

k ht+1 k2

�
z2t+1 + pt � qt

�1=2
P
�1

t+1 = P
�1

t + at+1a
T
t+1 + [�t+1 � �t]I (16)

xt+1 =
�
I ���t+1P t+1

�
ht+1

The above recursive algorithm requires the inversion of

the (n�n)-matrix P
�1

t at every step. Therefore, the com-
putational complexity of a single iteration is O(n3) as it
stands. This cost can be reduced to O(n2) by using (16) in

order to e�ciently update the eigendecomposition of P
�1

t

(or of P t). This is because P
�1

t+1 is obtained as a rank-one

update of P
�1

t in addition to a scalar multiple of the iden-
tity. In this case, the numerically stable O(n2) algorithm
developed in [6] for updating the SVD of rank-one matrix
updates can be used to reduce the cost of the algorithm to
O(n2). The details will be pursued elsewhere.

VI. SIMULATIONS

Consider the recursive min-max estimation problem in
the simple case when the fat; �atg, t = 1; 2; : : :, are scalars
(n = 1) and the aim is to estimate the real parameter
x = 1. The data at, the perturbation �at, and the noise vt
are generated randomly.
In Fig. 2(a), the exact solution x̂t provided by Theorem

3 is compared to the approximation xt computed according
to the above algorithm, which has been initialized at time
t0 = 1 with a random positive value �1. It can be seen
that in few steps xt gets very close to the exact solution
and then tracks it almost perfectly. Fig. 2(b) shows that
the same happens to �t with respect to �̂t. As one might
expect, simulations show that the approximation error can
be further reduced by iterating the map (12) more than
once every time instant, i.e. by choosing p > 1.
Several simulations have shown that the convergence rate

of the map (12) becomes slower when � is close to � . There-
fore, the same experiment described above has been re-
peated with the choice �t = 0:9�t, and the results are re-
ported in Fig. 3. Once again, the approximate solution is
able to track the exact one very well.
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Fig. 2. (a) Exact solution x̂t (dashed line) and its approximation xt

(continuous line) for the recursive min-max estimation problem.
(b) �̂t (dashed line) and �t (continuous line).
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Fig. 3. (a) x̂t (dashed line) and xt (continuous line) for the recursive
min-max estimation problem with �t = 0:9�t. (b) �̂t (dashed
line) and �t (continuous line).
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