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ABSTRACT

A set of approximations have been applied to allow the
inclusion of Gaussian distributed priors for the linear pa-
rameters of the General Linear Model in order that the
parameters may be integrated out alongside the Gaussian
error noise variance, to give the model evidence and pos-
terior distributions in analytic form. The extended model
achieves greater accuracy in parameter estimation and evi-
dence approximation when applied in a Bayesian inference
framework, with no increase in computational load.

1. REVIEW

The General Linear Model [1] models observable data d as
the linear b weighted combination of a set of basis functions
G with additive noise e in the form

d = Gb+ e (1)

If a Gaussian white noise model is assumed, the likelihood
function is given by

p(djG;b; �) = (2��2)�
N
2 exp

�
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eTe
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�
(2)

where N is the number of data points, and �2 is the noise
variance.

If we suppose a set of hypotheses H1::HS based on a set
of matrices G1::GS to model the observed data, with the
model structure supporting only the linear parameters b,
we may apply Bayes rule for model inference.

P (Hijd) =
P (Hi)p(djHi)

p(d)
(3)

where

p(djHi) =

Z
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Z
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The joint prior p(b; �) can take various forms which would
allow analytical integration of Equation 4 or approxima-
tions to be made for analytical results.

1.1. Method 1

Using a uniform prior for the linear parameters and an in-
verse chi distribution for the noise standard deviation �.

p(b) = k (5)
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Setting P0 = 1, P1 = 0 gives Je�rey's non-informative scale
prior [2] for the noise standard deviation.

The linear parameters b0::bM are integrated out over all
real M dimensional space <M by orthogonalisation, and �

is integrated out as a gamma integral.
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2. EXTENSION

2.1. Method 2

Using a Gaussian distribution for b and inverse chi prior
for �
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The linear parameters are integrated out over all real M
dimensional space <M by orthogonalisation

p(djG; �) =
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The form of p(djG; �) does not allow for the noise standard
deviation � to be integrated out analytically.

p(djG) =

Z
1

0

p(djG; �)p(�)d� (10)

MacKay [3] employs Gaussian approximations to the inte-
grand of the evidence integral. Other approaches involve
numerical methods or Monte Carlo models, none of which
give analytic form for the model evidence p(djG).

We derive an integrable form of the integrand in Equa-
tion 10 using the following approximations.
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Thus inserting Equation 11 into Equation 9, expanding, and
considering only signi�cant terms in �
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Q0 =
1

2
d
T (d�Gb̂L)

Q1 = �
1

2
(�b� b̂L)

T
�b

�1(�b� b̂L)

b̂L = (GT
G)�1GT

d

b̂L is in fact the maximum likelihood or least squares esti-
mate for b.

In the case � large such that �2
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Thus inserting Equation 13 into Equation 9, expanding, and
considering only signi�cant terms in �
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1

2
(d�G�b)T (d�G�b)

A pair of windowing functions is used to portion the noise
prior p(�) as given in Equation 8
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P2 = log (2)�2x , �
2
x =

"��GTG
�����b

�1
��
# 1
M

Combining the two portions of the noise prior in Equa-
tion 15 with their respective complements in p(djG; �) i.e.
Equation 12 (� � �x), and Equation 14 (� > �x)
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Integrating over � gives
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NP = N �M + P0

2.2. Method 3

Using a Gaussian distribution for b and inverse chi prior for
� as Equation 8, the noise standard deviation � is integrated
out �rst
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e
T
e = (d�Gb)T (d�Gb)

This is in the form of a Student-t distribution for b, which
may be approximated by a Gaussian.

Consider the general form [a+ b(x� c)2]�
p

2 , which has
variance
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Equalising the variance and the height of the mode of the
approximation to that of the Student-t distribution, the
Gaussian approximation is
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Extending this result to the multidimensional case
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a = P1 + (d�Gb̂)T (d�Gb̂)

b̂ = (GT
G)�1GT

d

The model evidence is now readily calculated as the integral
of the product of two Gaussians.

p(djG) =

Z
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papprox(djG;b)p(b)db (22)



The posterior distribution of b is given by

p(bjG;d) / papprox(djG;b)p(b) (23)

which has the following characteristics
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3. APPLICATION

3.1. Channel Estimation in non-stationary noise

The General Linear Model can represent an FIR �lter with
the linear parameters as the �lter coe�cients

dk = b0gk + b1gk�1 : : :+ bM�1gk�M+1 + ek (25)

d = Ggb+ e

Gg =

2
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g2 g1 g0 : : : g3�M
...

...
...
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gN�1 gN�2 gN�3 : : : gN�M

3
77775

If we have prior knowledge of gk, and if the additive noise
e is modelled well by an independent Gaussian distribution
of standard deviation �, we can use the General Linear
Model to estimate the linear parameters b providing they
are stationary.

In this test, the channel is carrying a binary data stream
s0::sNb�1. Each bit is encoded as g0 or g1 of length L. Thus
the columns of Gg are composed of the successive vectors
gs0 ::gs1 ::gs2 :: with their respective column to column dis-
placements for correct FIR �lter implementation.

The channel �lter coe�cients can be estimated by in-
tegrating and summing over the nuisance parameters using
Method 1.

p(bjd) =
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Clearly, as Nb increases, the summation over all combina-
tions of s becomes unmanageable. The summation is there-
fore approximated by retaining the most probable Nnodes

combinations of s as successive observations are received.
This allows for e�cient recursive updating of the evidence
and posterior density as new data arrives, using the Wood-
bury formula [4] [1, page 105].

If we further propose that the channel is subject to non-
stationary noise, we can modify the model to assume the
noise is stationary within small segments of observed data.
For convenience of analysis, we assume the segment bound-
aries coincide with the data bit s boundaries.

For a segment length of 2L, and M � L
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Each of the terms p(d0::d2L�1jb; s�1; s0; s1),
p(d2L::d4L�1jb; s1; s2; s3) : : : is a Student-t distribution in b
which is consistent with Method 3 for Gaussian approxima-
tion. The summation is again approximated by retaining
the most probable Nnodes combinations of s as successive
observations are received. The evidence for the combina-
tions in s are calculated using Method 2. As each new
observation arrives, the current set of Nnodes provide prior
information for b given each combination of s they repre-
sent in the form of the product of Gaussian approximations,
as calculated within the summation in Equation 27. New
candidate nodes are compared and selected by integrating
over the likelihoods and priors in b and �k using Method 2

p(d0::d2Lk�1js�1::s2k�1) = (28)Z
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The observed data in this test is generated by �ltering the
sequence of vectors gs0 , gs1 , gs2 : : : and adding Gaussian
white noise whose standard deviation is determined by a 2
state Markov process to model burst noise. The transition
matrix is given by

T� =

�
p11 p21
p12 p22

�
(29)

p12 = 1� p11

=
mean burst rate

(1�mean burst rate)�mean burst length

p22 = 1� p21

= 1�
1

mean burst length

States are recomputed for every data sample d0::dLNb�1.

3.2. Results

A random bitstream of length Nb = 40 was used to pro-
duce the original data composed of the stream of successive
vectors gs0 , gs1 , gs2 : : : where both g0 and g1 are Gaussian
random vectors of standard deviation 1 and length L = 8.
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Figure 1: Examples of original signal, �ltered signal and
noisy �ltered signal
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Figure 2: Inverse chi noise prior and Channel coe�cient
estimates based on full data

The M = 8 �lter coe�cients are based on a damped
sinusoid as shown in Figure 2. A mean burst rate of 0.2
and mean burst length of 10 were used to model the non-
stationary channel noise. State 1 has noise standard devia-
tion � = 1 and state 2 has � = 5. Examples of the original
signal, �ltered signal and noisy �ltered signal are shown in
Figure 1.

The corresponding noise prior (Figure 2) for both the
General Linear Model (Method 1) and Extended General
Linear Model (Methods 2 and 3) has inverse chi distribution
parameters P0 = 1 and P1 = 1. The linear parameter b
priors are uniform.

A noise segment length of 2L was used to model the
non-stationary noise, giving a total of Nb

2
= 20 segment

observations. Using Nnodes = 16, the mean and standard
deviation of the estimates for the channel coe�cients over
100 randomly generated input data streams are plotted in
Figure 2. Figure 3 shows the progress of the mean and
standard deviation of the estimates as the number of obser-
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Figure 3: Channel coe�cient estimates for b0::b3 based on
increasing number of observations

vations increases.
The MAP estimates for s were compared against the

original bitstreams as a measure of classi�cation perfor-
mance. Over the 100 random samples, the error rate was
16.4% for the combined EGLM (Methods 2 and 3), and
20.2% for the GLM (Method 1). Performing the same test
using the EGLM Method 3 for both the posterior and ev-
idence calculations resulted in very similar coe�cient esti-
mate characteristics, but an error rate of 20.1%. This is
due to the thin tails of the Gaussian approximation to the
Student-t underestimating the evidence.

Both the GLM and EGLM require O(M2LNbNnodes)
computational cycles to process a random sample of data.

4. CONCLUSION

Due to its ability approximately to model non-stationary
noise, the Extended General Linear Model produces esti-
mates for the channel coe�cients with signi�cantly nar-
rower standard deviation and therefore greater accuracy.
Classi�cation is correspondingly improved when extension
Methods 2 and 3 are combined. The improvement in perfor-
mance is achieved with no increase in computational load.
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