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ABSTRACT
Given a linear stationary non-Gaussian signal, suppose

that we �t a linear model using higher-order statistics and
one of several existing methods. The model is �tted under
certain assumptions on the data and the underlying (true)
model. Having obtained a model, how do we know if the
�tted model is \good?" This paper is devoted to the prob-
lem of model diagnostics and validation. We propose some
simple frequency-domain tests that are applicable to both
third-order and fourth-order statistics-based model �tting
unlike existing tests. A computer simulation example is
presented to illustrate the proposed tests.

1 Introduction
The area of parametric modeling via higher-order

cumulant functions has attracted considerable atten-
tion in recent years [3],[4]. Use of higher order statis-
tics allows one to identify noncausal as well as non-
minimum phase �nite-dimensional parametric models
from system output measurements alone (blind iden-
ti�cation). Most of the published papers thus far have
concentrated upon various aspects of parameter esti-
mation and model order selection including algorithm
development and analysis. It appears that only [1]
has addressed the problem of model validation. This
paper is devoted to the problem of model validation
using higher order statistics which is appropriate when
the model has been �tted using higher order statistics.
Model validation involves testing to see if the �tted
model is an appropriate representation of the under-
lying (true) system. It involves devising appropriate
statistical tools to test the validity of the assumptions
made in obtaining the �tted model.

Given the data and an appropriately �tted linear
model, in order to validate the model, we �rst inverse
�lter the data using the �tted model. Then the linear
model validation problem is cast into a classical binary
hypothesis testing problem. Under the null hypothe-
sis that �tted model generates the data, the inverse
�ltered data is an i.i.d. non-Gaussian sequence, pos-
sibly contaminated with a colored Gaussian noise se-
quence. Under the alternative hypothesis that the �t-
ted model does not describe the given data, the inverse
�ltered data is a colored non-Gaussian sequence, pos-
sibly contaminated with a colored Gaussian noise se-
quence. The model validation test considered in [1] is
based upon testing for constancy of the bispectrum of
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the inverse �ltered data. It is restricted to third-order
statistics-based model �tting. In this paper we use
some simple frequency-domain tests using integrated
polyspectra [5] that are applicable to both third-order
and fourth-order statistics-based model �tting.

2 Model Assumptions
Let fs(t)g denote a stationary ARMA(p; q) signal

given by

pX
i=0

ai s(t � i) =

qX
i=0

biw(t � i); a0 := 1; b0 := 1:

(2 � 1)
The measurements of the signal are noisy

x(t) = s(t) + v(t): (2 � 2)

The input fw(t)g is not observed. The following con-
ditions are assumed to hold.

(H1) A(z) =
Pp

i=0 ai z
�i 6= 0 for jzj � 1.

(H2) B(z) =
Pq

i=0 bi z
�i 6= 0 for jzj = 1.

(H3) The random sequence fw(t)g is i.i.d., zero-
mean and non-Gaussian such that its r�th
cumulant 
rw is nonzero for either r = 3
and 4 or r = 4 and 6. Moreover its mo-
ments up to order twelve are assumed to
be bounded.

(H4) The zero-mean noise fv(t)g is independent
of fw(t)g and is colored Gaussian such that

jcovfv(t1); v(t2)gj � M�jt1�t2j for some
0 < M < 1 and 0 < � < 1, and for all
t1 and t2.

Condition (H1) can be relaxed to (H10): A(z) 6= 0
for jzj = 1. Several schemes are available in the lit-
erature to estimate the unknown parameter vector �
= (a1; � � � ; ap; b1; � � � ; bq) given a sample sequence of
observations XN = fx(t); 1 � t � Ng [1],[3],[4].

3 Model Diagnostics and Validation
The basic premise of the proposed model diagnos-

tics and validation procedures is just as in [1]. Sup-
pose that we �t a linear model to the noisy data
based solely upon the third-order or the fourth-order



cumulant sequence of fx(t)g. Let b� denote the pa-
rameter vector for a linear model that is to be val-
idated given XN . Let fbh(i; b�); i � 0g denote the

impulse response of the model parametrized by b�. Let
fbg(i); �1 < i < 1g denote its inverse such thatP1

l=�1 bg(l)bh(i � l; b�) = �(i). Because we can not re-

solve the ambiguity concerning the scale factor and
time shift of the true impulse response, it follows thatP1

l=�1 bg(l)bh(i � l; �0) � c�(i � i0) where c and i0
are some constant and integer, respectively, and �0
denotes the true parameter vector. De�ne

v0(t) :=

1X
i=�1

bg(i)v(t � i); s0(t) :=

1X
i=�1

bg(i)s(t � i);

x0(t) =

1X
i=�1

bg(i)x(t� i): (3� 1)

Under the null hypothesisH0 that the �tted model b� is
the true underlying model, we have s0(t) = cw(t� i0)
and v0(t) is Gaussian.

Thus, after linear inverse �ltering, we have a clas-
sical binary hypothesis testing problem:

H0 : x0(t) = cw(t� i0) + v0(t); t = 1; 2; � � � ; N;

H1 : x0(t) = s0(t) + v0(t); t = 1; 2; � � � ; N;
(3� 2)

where N is \large" and under the alternative hypothe-
sisH1, fs(t)g is some other linear or nonlinear process,
therefore, fs0(t)g is also a non-i.i.d. random sequence.
The test statistic discussed in [1] is based upon testing
for constancy of the bispectrum of the �ltered mea-
surements. In this paper we propose to use two slices
of higher-order cumulant sequences of the �ltered mea-
surements to test for higher-order whiteness of fx0(t)g
under H0.

3.1 Third-Order Statistics-Based Fitting
Consider the following two slices of cumulants of

fx0(t)g:

C3x0(� ) := Efy2x0(t)x0(t+ � )g

C4x0(� ) := Efy3x0(t)x0(t + � )g (3� 3)

where
y2x0(t) := x02(t) �Efx02(t)g

y3x0(t) := x03(t)� 3Efx02(t)gx0(t) �Efx03(t)g:
(3� 4)

It then follows that

C3x0(� ) := cum3 fx
0(t); x0(t); x0(t + � )g ; (3� 5)

C4x0(� ) := cum4 fx
0(t); x0(t); x0(t); x0(t + � )g :

(3� 6)
It is easy to see that under H0, C3x0(� ) = 0 =

C4x0(� ) 8� 6= 0. An important result is the converse

of the preceding statement.
Lemma 1. Let fx0(t)g be as in (3-1) with fbg(i)g
denoting the impulse response function of a stable ra-
tional transfer function. If C3x0(� ) = 0 = C4x0(� )
8� 6= 0 where fx0(t)g obeys (2-1),(2-2) and (3-1), then
x0(t) = cw(t� i0) + v0(t). �
Proof: Let Sr(z) denote the Z-transform of the se-
quence fCrx0(� )g (r=3 or 4). The hypothesis of the
lemma implies that

S3(z) = c1 and S4(z) = c2 8z (3 � 7)

where c1 and c2 are some constants. Let the transfer
function of the overall concatenated system comprised
of the original system followed by the inverse �lter
with w(t) as input and x0(t) as output, be denoted by
H(z). Then it follows that

S3(z) = 
3wH2(z)H(z); (3 � 8)

S4(z) = 
4wH3(z)H(z) (3 � 9)

where 
rw denotes the r�th cumulant of the random
variable w(t) and where if H(z) :=

P1
i=�1 h(i)z�i,

then

H2(z) :=

1X
i=�1

h2(i)z�i (3� 10)

and

H3(z) :=

1X
i=�1

h3(i)z�i: (3� 11)

It also follows from the hypotheses of the lemma that
H(z) is a stable, rational transfer function. It further
follows from (3-7)-(3-11) that, for some constant d(6=
0), we have

dH2(z) = H3(z) 8z

)
1X

i=�1

h2(i)[d� h(i)]z�i = 0 8z

) h2(i)[d� h(i)] = 0 8i: (3� 12)

Therefore, either h(i) = 0 or h(i) = d for any given i.
Two cases arise:
Case A. h(i) = d for in�nitely many i's. This implies
that H(z) is unstable { a contradiction.
Case B. h(i) = d for �nitely many i's. This implies
that H(z) is FIR (�nite impulse response). Let iL
and iH � iL be two integers such that h(i) = 0 for
any i < iL and for any i > iH but h(iL) 6= 0 and
h(iH ) 6= 0. Then we have

C3x0(iH � iL) = 
3wd
3

which violates a hypothesis of the lemma unless iH =
iL, in which case H(z) = dz�iL yielding the desired
result. 2

Thus, higher-order whiteness of two cumulant slices
of respectively di�erent order cumulants implies that



H0 is true. [It appears that C3x0(� ) = 0 8� 6= 0 alone
does not necessarily imply H0.]

De�ne (r = 3 or 4)

Srx0 (!) :=

1X
�=�1

Crx0(� )e�j!� = S(ej!): (3� 13)

The above quantities have been called integrated
polyspectra in [5]. Lemma2 then follows trivially from
Lemma 1.

Lemma 2. Let fx0(t)g be as in (3-1) with
fbg(i)g denoting the impulse response function of a
stable rational transfer function. If S3x0(!) = c1
and S4x0(!) = c2 8! where c1 and c2 are some con-
stants and fx0(t)g obeys (2-1),(2-2) and (3-1), then
x0(t) = cw(t� i0) + v0(t). �

Thus, constancy of two integrated polyspectra of
respectively di�erent orders implies that H0 is true.
Our proposed test for the binary hypothesis testing
problem (3-2) is based upon Lemma 2.

Given fx0(t); 1 � t � Ng, calculate fy2x0(t); 1 �
t � Ng and fy3x0(t); 1 � t � Ng replacing expecta-
tions in (3-4) with appropriate sample averages. Let
X0(!) denote the DFT of fx0(t); 1 � t � Ng given
by

X0(!k) =

N�1X
t=0

x0(t + 1)exp(�j!kt); (3� 14)

!k =
2�

N
k; k = 0; 1; � � � ; N � 1: (3� 15)

Similarly de�ne Y2x0(!k) and Y3x0(!k). Given the
above DFT's, de�ne the cross-spectrum (integrated
polyspectrum [5]) estimators as

bS3x0(k) :=
1

N (2mN + 1)

mNX
i=�mN

X0(!k�i)Y
�
2x0(!k�i);

(3� 16)

bS4x0(k) :=
1

N (2mN + 1)

mNX
i=�mN

X0(!k�i)Y
�
3x0(!k�i):

(3� 17)
Let us choose mN to be such that as N !1, we have
mNN

�1 ! 0 and mN ! 1. In light of (3-16) de�ne
a coarser frequency grid:

!l =
2�l

LN
=

2�l(2mN + 1)

N
(3� 18)

with l = 0; 1; � � � ; LN � 1 where LN = b N
2mN+1

c. It

then follows from [7] that asymptotically,

bS3x0(k) � NC
�
S3x0(!k);�

�1
N Sx0x0(!k)S22(!k)

�
;

(3� 19)bS4x0 (k) � NC
�
S4x0(!k);�

�1
N Sx0x0(!k)S33(!k)

�
(3� 20)

where �N = 2mN + 1, NC(�; �2) denotes a complex
(circularly symmetric) Gaussian [7] distribution with
mean � and variance �2, and S22(!) and S33(!) de-
note the power spectra of y2x0(t) and y3x0(t), respec-

tively. Moreover, the estimators bS3x0(k) for various k's
on the coarse grid (3-18) are asymptotically mutually

independent. The same is true for bS4x0(k).
Pick P points on the coarse grid (3-18) in the inter-

val (0; �); call this set 
P . De�ne the vectors/matrices

bR3x0 :=
h bS3x0(l); l 2 
P

iT
; (3� 21)

bR4x0 :=
h bS4x0(l); l 2 
P

iT
; (3� 22)

�3 := cov
nbR3x0

o
= a diagonal matrix; (3� 23)

�4 := cov
nbR4x0

o
= a diagonal matrix: (3� 24)

Consider a (P � 1)� P matrix D de�ned as

D :=

2
64

1 �1 0 � � � 0
0 1 �1 � � � 0
...

...
. . .

. . .
...

0 0 � � � 1 �1

3
75 : (3� 25)

Under H0 (cf. Lemma 2), asymptotically DbR3x0 �

NC(0;D�3D
T ) and DbR4x0 � NC(0;D�4D

T ). Letb�r denote a consistent estimate of �r (r = 3 or 4)
obtained by using estimators similar to (3-16) in (3-
19) and (3-20). Then by [2, Lemma B.4], under H0,
asymptotically

(DbR3x0)H(Db�3D
T )�1(DbR3x0) � �2(2P � 2);

(3� 26)

(DbR4x0)H(Db�4D
T )�1(DbR4x0) � �2(2P � 2):

(3� 27)
The preceding discussion suggests the following

simpli�ed (sub-optimal) test procedure for higher-
order whiteness. Accept H0 if the following two in-
equalities hold true:

(DbR3x0)H(Db�3D
T )�1(DbR3x0) � T�; (3� 28)

(DbR4x0)H(Db�4D
T )�1(DbR4x0) � T� (3� 29)

else reject it, where T� is the threshold corresponding
to a signi�cance level �, i.e., PrfY > T�g = � where
Y � �2(2P � 2).

3.2 Fourth-Order Statistics-Based Fitting
Now consider the cumulants slices C4x0(� ) and

C6x0(� ) of fx0(t)g:

C6x0(� ) := Efy5x0(t)x0(t+ � )g

= cum6 fx
0(t); � � � ; x0(t); x0(t+ � )g (3� 30)



where

y5x0(t) := y05x0(t) �Efy05x0(t)g; (3� 31)

y05x0(t) := x05(t)� 10Efx02(t)gx03(t)

+
�
30(Efx02(t)g)2 � 5Efx04(t)g

�
x0(t):

(3� 32)
Under H0, C4x0(� ) = 0 = C6x0(� ) 8� 6= 0. A converse
just as in Lemma 1 also holds true. Using (3-13) the
counterpart to Lemma 2 is

Lemma 3. Let fx0(t)g be as in (3-1) with
fbg(i)g denoting the impulse response function of a
stable rational transfer function. If S4x0(!) = c1
and S6x0(!) = c2 8! where c1 and c2 are some con-
stants and fx0(t)g obeys (2-1),(2-2) and (3-1), then
x0(t) = cw(t� i0) + v0(t). �
Proof of Lemma 3 mimics that for Lemma 2; it is
omitted.

With obvious notation, de�ne as in (3-17),

bS6x0(k) :=
1

N (2mN + 1)

mNX
i=�mN

X0(!k�i)Y
�
5x0(!k�i):

(3� 33)
Then we have

bS6x0 (k) � NC
�
S6x0(!k);�

�1
N Sx0x0(!k)S55(!k)

�
(3� 34)

where S55(!) denotes the power spectrum of y5x0(t).
De�ne the vectors/matrices

bR6x0 :=
h bS6x0(l); l 2 
P

iT
; (3� 35)

�6 := cov
nbR6x0

o
= a diagonal matrix: (3� 36)

Mimicking the developments in Sec. 3, we have: Ac-
cept H0 if the following two inequalities hold true:

(DbR4x0)H(Db�4D
T )�1(DbR4x0) � T�; (3� 37)

(DbR6x0)H(Db�6D
T )�1(DbR6x0) � T� (3� 38)

else reject it, where T� is the threshold corresponding
to a signi�cance level � for a �2(2P � 2) distribution.

4 Simulation Example
We will illustrate the proposed model diagnostics

and validation approach by using it for model order
selection, as in [1]. The signal s(t) is ARMA(2,1) with
either zero-mean, i.i.d. binary (�1 with probability
0.5 each) driving sequence fw(t)g or zero-mean, i.i.d.
one-sided exponential fw(t)g, and noise is zero-mean,
white Gaussian:

s(t) = 0:8s(t� 1)� 0:52s(t� 2)+w(t)� 1:5w(t� 1):

We �t AR(p; q) models for p; q = 0; 1; � � � ; 6 using
cumulant matching (third-order for exponential and

fourth-order for binary)[1]. The \smallest" (p; q) for
which the �tted model can be validated is declared
the correct model order; see [1] for exact details. To
apply the tests (3-37)-(3-38) (binary case) or (3-28)-(3-
29) (exponential case), we selected � = 0:01 and used
various record lengths N and SNR's. The smoothing
window sizes 2mN +1 were 11, 21, 45 and 89 for N =
1024, 2048, 4096 and 8192, respectively. We used all
the points on the coarse grid in the interval (0; �) to
select P . Results of 100 Monte Carlo runs are shown
in Table 1 for exponential input and in Table 2 for
binary input.

TABLE 1: Exponential w(t)
No. of times the correct order

(p; q) = (2,1) is selected out of 100 runs
(N = record length)

SNR ! 30 dB 20 dB 10 dB
N #
1024 96 97 88
2048 98 98 100
4096 99 100 100

TABLE 2: Binary w(t)
No. of times the correct order

(p; q) = (2,1) is selected out of 100 runs
(N = record length)

SNR ! 30 dB 20 dB 10 dB
N #
2048 83 82 63
4096 91 92 88
8192 96 97 93
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