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Abstract

The constant modulus algorithm (CMA) is an e�ective

technique for blind receiver design in practice. Treating

CMA as a linear estimation problem, e�ects of noise

and channel conditions are investigated. For the class

of channels with arbitary �nite impulse responses, an

analytical description of locations of constant modulus

receivers and an upper bound of their mean squared er-

rors (MSE) are derived. We show that, with proper ini-

tializations, CMA can achieve almost the same perfor-

mance as the (nonblind) minimum mean square error

(MMSE) receiver. Our analysis reveals a strong rela-

tionship between the (blind) constant modulus and the

(nonblind) MMSE receivers. It also highlights the sig-

ni�cance of initialization/reinitialization schemes. The

approach developed in this paper also applies to CMA

blind beamforming in array signal processing.

1. INTRODUCTION

Blind equalization is becoming a useful receiver design

technique in some advanced digital communication sys-

tems. When applied in practice, it is important to com-

pare its performance with nonblind receivers. A quan-

titative measure of performance degradation is particu-

larly valuable.

One successful blind equalization scheme is the con-

stant modulus algorithm (CMA). Performance of CMA

has been studied by many researchers, but mostly for

the local minimum in the noiseless case [3, 5, 1]. Ef-

fects of noise has been investigated recently. Since the

CMA involves the optimization with a nonconvex cost

function, theoretical analysis without approximation is

di�cult. A number of approaches [2, 6] have been pre-

sented based on various approximations at high signal

to noise ratio. It is often not clear when such analysis

is accurate.
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Without involving approximation, a new geometrical

technique [9, 11] has been proposed recently to address

some important issues such as the existence of �nite-

length fractionally-spaced CMA local minimum and its

MSE in the presence of noise. Unfortunately, one of the

assumptions in [9, 11] is the invertibility (nonsingular)

of the channel matrix. This excludes some very impor-

tant practical applications such as T-spaced equaliza-

tion, fractionally-spaced equalization with insu�cient

equalizer length.

This paper derives the MSE of constant modulus re-

ceiver under Gaussian noise for an arbitrary channel ma-

trix. Although the method in [9, 11] can not be applied

for a singular channel, the basic concept is still valid.

In particular, the MSE analysis in this paper relates

the constant modulus receiver to the MMSE (the op-

timal linear) receiver. The main results include (i) a

su�cient condition for the existence of a constant mod-

ulus (CM) receiver in the neighborhood of a MMSE re-

ceiver; (ii) an analytical description of the region that

contains a CMA local minimum in the neighborhoods

of a MMSE receiver; (iii) an upper bound of the MSE

of these constant modulus receivers. Using the derived

MSE bound, we study the local minimum problem. We

show that there exists a class of CMA local minima as-

sociated with the MMSE receiver with di�erent delays.

We also apply the result to the Ding's example of local

minima presented [1]. The analysis shows that Ding's

local minimum is in fact related to the MMSE equalizer.

2. PROBLEM FORMULATION

Consider a linear time-invariant system shown in Fig-

ure 1.

x = Hs+w; (1)

y = f
t
x = q

t
s+ f

t
w; (2)

where H is an n�m channel matrix, (�)t denotes trans-

pose. This model is valid for both T-spaced and frac-

tionally spaced FIR equalization. It also includes the

beamforming problem in array signal processing. We



assume that (A1) entries of s are zero mean, i.i.d. ran-

dom variables with unit variance and the dispersion ra-

tio r = Efjsj4g=Efjsj2g; (A2) entries of w are i.i.d.

Gaussian random variables with variance �2 > 0.
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Figure 1: A linear estimation in a time invariant

system.

The main objective of this paper is to determine the

location and MSE of constant modulus (CM) receivers,

and to show the connection between CM and MMSE

receivers. Note that we do not assume H is full column

rank, i.e., H may be singular.

3. THE MSE OF CM RECEIVERS

3.1. An Equivalent Cost Function

The CM receiver minimizes the following objective func-

tion

Jc(f)
�
= Ef(jyj2 � r)2g

= 3jjf jj4R � 2rjjf jj2R � (r � 3)jjHt
f jj

4
4+ r

2
:(3)

where jjf jj2R = f tRf , jj � jj4 denotes the 4-th norm, and

R
�
= Efxx

t
g =HH

t + �
2
In: (4)

One important property is that the CM receiver must

be in the \signal subspace" spanned by the columns of

H [11]. Thus we can analyze CM receivers in terms the

combined channel-receiver q
�
= Htf , where H de�nes a

1-1 mapping between the column space and row space

of H. For q 2 Row(H), de�ne

J(q)
�
= Jc((H

t)yq)

= 3jjqjj4� � 2rjjqjj2� � (3� r)jjqjj44 + r
2
;(5)

where

� = Im + �2Hy(Hy)t: (6)

Therefore, we have

min Jc(f); f 2 Col(H) , min J(q); q 2 Row(H):

3.2. A Geometrical Approach

A key step is to bound the location of constant modu-

lus receivers (local minima of the constant modulus cost

function). Although the method in [9, 11] can not be ap-

plied for singular channel, the basic concept is still valid.

In contrast to the nonsingular case, we encounter a more

di�cult constrained optimization problem as shown in

Figure 2. Let S be the linear subspace spanned by the

row space of H, and we have mentioned earlier that all

CMA receivers are within S. Suppose that there is a

region B with boundary @B and qr is a reference point

in B
T
S. If the cost J(q) on the boundary @B

T
S is

greater than that of the reference qr, then there exists

at least a minimum of J(q) in B
T
S.
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Figure 2: The geometrical approach with

subspace constraint.

Our approach includes following three steps:

Step I: Reference

We choose the reference as the vector which is colin-

ear with the MMSE receiver and has minimum CM

cost. Speci�cally, the MMSE receiver for estimating s�

is given by

qm = H
t
R
�1
He� ; (7)

where e� is a unit column vector with 1 at the �th entry

and zeros elsewhere. De�ne the reference qr = �rqm,

where �r minimizes the CM cost function (5):

�r = argmin
�

J(�qm) =

s
rjjqmjj2�

3jjqmjj4�
� (3� r)jjqmjj44

:

Thus, we obtained the reference qr and its CM cost

J(qr).

Step II: Cone-type Region

The neighborhood is de�ned according to the re-

ceiver gain � and the extra unbiased mean square

error (UMSE) u. For a given receiver q =

[q1 � � � q��1 q� q�+1 � � � qm]
t whose output y is the esti-

mate of s� , the receiver gain and interference is de�ned

by

�
�
= q� = e

t
�q qI

�
= [q1 � � � q��1 q�+1 � � � qm]=q� ; (8)

If we scale the receiver q by 1
�
, we obtain the (condi-

tionally) unbiased receiver u, i.e., u = y

�
. Based on �

and the MSE of u, we de�ne the neighborhood as

fq 2 Row(H) : �L � � � �U ;MSE(u)�MSE(um) � �
2
Ug

(9)

where um is the unbiased MMSE receiver. It is shown in

[10] that the neighborhood (9) is equivalent to a sliced



cone given by

B = fq 2 Row(H) : �L � � � �U ; jjqI � qmI jjC � �Ug

(10)

where matrix C is the submatrix of � by deleting the

�th column and �th row.

�qI

��L �r �m �U 1

qr
qm �U

Figure 3: A cone-type region.

Step III: CM Cost on the Boundary

Based on the cone-type region, the CM cost function

J(q) can be reduced to a function in terms of gain �

and extra UMSE �2U [10].

Lemma 1 Let qo = ��1e� , �o and qoI are the gain

and interference of qo respectively. For any q 2 B,

J(q) � J(qr) � c2(�)�
4 + c1(�)�

2 + c0;

(equality holds i� � = 0) (11)

where

�
�
=
p
�2U + �20 ; �0

�
= jjqmI � qoIjjC;

c0
�
= r

2
� J(qr); c1(�)

�
= �2r(�2 +

1

�o
);

c2(�)
�
= 3(�2 +

1

�o
)2 � (3� r)(1 + (�+ jjqoIjj4)

4):

3.3. Location and MSE of CM Receivers

From Lemma 1, we can see that the J(q) � J(qr) is

lower bounded by a second-order polynomial of �2 with

coe�cients c2(�); c1(�), and c0, all of which are functions

of � but not of �. Thus the region B containing CM

receivers can be obtained by choosing �L; �U , and �U

such that J(q)� J(qr) > 0 for all q 2 @B.

Theorem 1 GivenH, r, �2 and �. Let D(�)
�
= c21(�)�

4c2(�)c0. If (1) D(�) has real roots in (�0;1), and the

smallest of which is ��; (2) 8� 2 [�0; ��], c2(�) > 0, then

there exists a local minimum in the region (10) and

�
2
U = �

2
� � �

2
0 (12)

�L = min
�0�����

s
�c1(�)�

p
c21(�)� 4c2(�)c0

2c2(�)
(13)

�U = max
�0�����

s
�c1(�) +

p
c21(�)� 4c2(�)c0

2c2(�)
:(14)

Once �U ; �L; �U are obtained, the MSE upper bound

of CM receivers in this region can be obtained. Fur-

thermore, the MSE of the reference can be used as an

approximation [10].

Theorem 2 The MSE of CM receivers in B is upper

bounded by EU and is approximated by Ê :

EU = maxf
(�U � �o)

2

�o
+ (�U��)

2
;
(�L � �o)

2

�o
+ (�L��)

2
g

+1� �o (15)

Ê =
(�r � �o)

2

�o
+ (�r�0)

2 + 1� �o; (16)

4. BAUD-RATE EQUALIZATION

We apply the analysis above to baud-rate equalization

where the channel matrix is singular. For a baud-

rate equalizer of a �nite impulse response channel h =

[h0; � � � ; hL�1]
t, the corresponding vector representation

in Figure 1 is given by

H
�
=

0
@ h0 � � � hL

. . .
. . .

h0 � � � hL

1
A

n�m

;

x
�
= [x(k); � � � ; x(k� n� 1)]t;

s
�
= [s(k); � � � ; x(k� n� L)]t; m = n+ L� 1:

4.1. Equalizer Delay and Ill Convergence

We consider now an example [9] where the channel

impulse response is f0.0113, -0.0285, 0.0606, 0.8701,

0.4392, 0.4392g. We compare EU and Ê with the ac-

tual MSE of CM (Ec) and the MMSE (Em). The CM

equalizers are obtained from the gradient search for the

local minima initialized at MMSE receivers.

In equalization, ��1 represents the delay of the com-

bined channel and equalizer response. Due to the na-

ture of blind estimation, the delay can not be speci�ed

in the CM equalizer. Depending on the initialization,

the CMA may converge to any local minimum. From

Figure 4, the CM equalizer at � = 11 has 10dB MSE

loss comparing with the optimal CM equalizer at � = 5.

4.2. Ding's Example

For �nite-length T-spaced CM equalizer, Ding showed

the existence of local minimum for AR channels [1].

In this section, we show that Ding's local minimum in

fact belongs to the local minima associated with MMSE

equalizers. Consider the following AR channel

x(k) + �x(k� 1) = s(k): (17)

The equivalent channel impulse response is hi = (��)i.

For a 2-tap equalizer [f1; f2]
t, Ding showed that there
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Figure 4: Dashed line: EU ; Solid line: Ec; Cross:

Ê; Dashdot: Em; SNR = 20dB,

r = 1(BPSK), n = 8.

exists two local minima given by

f
(1)
c = [1; �]t (18)

f
(2)
c = [0;

r
1� �4

3(1 + �2)� 2r(1 � �2)
]t: (19)

According to Theorem 1, it is interesting to exam-

ine the relationship between these local minima and the

MMSE solutions. It can be shown that the channel ma-

trix and the covariance of x = [x(k); x(k � 1)]t in (17)

are given by

H =

�
1 �� �2 � � �

0 1 �� � � �

�

R
�
= Efxx

t
g =

1

1� �2

�
1 ��

�� 1

�
:

The MMSE receiver at � = 1; 2 are given by

f
(1)
m = R

�1
H(:;1) = [1; �]t = f

(1)
c

f
(2)
m = R

�1
H(:;2) = [0; 1� �

2]t / f
(2)
c :

When r = 1 and � = 0:5, f
(2)
c = [0; 0:6455]t which is

close to f
(2)
m = [0; 0:75]t.

We also apply Theorem 1 to this example with the

channel truncated to Lh = 20. Using (10), f
(2)
c is located

in the neighborhood of f
(2)
m and the MSE bound are

given in Table 1. In this case, the CM equalizer is co-

linear with the MMSE receiver. The estimate MSE (Ê)

turns out to be the exact MSE of the CMA (Ec).

� EU Ê Ec Em

1 0.0000 0.0000 0.0000 0.0000

2 0.2983 0.2646 0.2646 0.2500

Table 1: MSE of Ding's example. r = 1, � = 0:5.

5. CONCLUSION

In this paper, the MSE performance of the CMA is in-

vestigated for arbitrary (real) channels including baud-

rate equalization and fractionally-spaced equalization.

Given the channel matrix, the dispersion ratio and the

noise variance, the location and MSE bound of a CM

receiver in the neighborhood of a MMSE receiver is de-

rived analytically. The analysis shows that, while in

some cases the CM equalizer performs almost as well as

the (nonblind) MMSE receiver, it is also possible that,

due to its blind nature, CMA may perform considerably

worse than a (nonblind) MMSE receiver. Our results

underscore the importance of developing initialization

and reinitialization schemes for CMA, one of which is

presented in [7].
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