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ABSTRACT
We consider a frequency-domain solution to the least-

squares equation error identi�cation problem using the
power spectrum and the cross-spectrum of the IO (input-
output) data to estimate the IO parametric transfer func-
tion. The proposed approach is shown to yield a unimodal
performance surface, consistent identi�cation in colored
noise and su�cient-order case, and stable �tted models
under undermodeling for arbitrary stationary inputs so
long as they are persistently exciting of su�ciently high
order. Asymptotic performance analysis is carried out for
both su�cient-order and reduced-order cases. Computer
simulation results are presented to illustrate the proposed
approach.

1 Introduction
Consider the following widely used input-output linear

system model:

y(t) = H(q)u(t) + v(t) (1� 1)

where fu(t)g is the measured input sequence, t is discrete-
time, fy(t)g is the noisy output, and fv(t)g is a measure-
ment noise (disturbance) sequence. With q�1 denoting the
backward-shift operator (i.e. q�1u(t) = u(t�1)), the linear
system H(q) represents an IIR (in�nite impulse response)
system:

H(q) =

1X
i=0

h(i)q
�i
: (1� 2)

Given an input-output record fu(t); y(t); t = 1; 2; � � �g,
but the underlying true system model H(q) unknown, it
is of much interest in control, communications and signal
processing applications to �t a rational function model

G(q) :=
B(q)

A(q)
=

Pnb
i=1

biq
�i

1 +
Pna

i=1
aiq�i

(1� 3)

to given input-output record [1]-[6],[8]. A wide variety of
approaches exist [1],[4],[5],[8].

The main objective of this paper is to provide a
frequency-domain solution using spectral analysis to the
problem of equation error (least-squares) system identi�ca-
tion given time-domain input-output data. The proposed
method is shown to lead to:
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� Global convergence (unimodal cost function) since we
have a cost quadratic in the unknown parameters.
This is unlike PEM (prediction error method) and
OEM (output error method) [4],[5].

� Consistent estimates in the su�cient order case even
when fv(t)g is colored. This is unlike the EEM (equa-
tion error method) of [1] which requires the noise to
be white.

� Asymptotically stable �tted model in the reduced or-
der case for arbitrary stationary inputs so long as
they are persistently exciting of su�ciently high or-
der. This is unlike PEM, SSM (Steiglitz-McBride
method), EEM and IVM (instrumental variable
method). In particular, ARMA inputs are included
unlike [1].

2 Model Assumptions
We impose the following conditions on (1-1):

(AS1) fu(t)g and fy(t)g are zero-mean and jointly
stationary. The power spectral density (PSD)
Suu(!) of fu(t)g is > 0 for almost all ! 2 [0; �]
if the proposed approaches utilize the entire fre-
quency range [0; �]. If a �nite number of fre-
quencies are used then Suu(!) need be nonzero
only for this frequency set.

(AS2) The true system transfer function H(q) is causal
and stable. Therefore,

P
1

i=0
h2(i) <1.

(AS3) The noise sequence fv(t)g is zero-mean, station-
ary and independent of fu(t)g.

(AS4) The following summability conditions hold true:

1X
�1 ;���;�k�1=�1

[1+j�jj] jCz1z2���zk(�1; � � � ; �k�1)j < 1;

for each j = 2; � � � ; k � 1 and each k =
2; 3; � � � where zi(t) 2 fy(t); u(t); v(t)g and
Cz1z2���zk(�1; � � � ; �k�1) is the k-th order joint
cumulant of the random variables fz1(t +
�1); � � � ; zk�1(t+ �k�1); zk(t)g.

Let the vector of unknown parameter be given by

� = [a1 � � � ana b0 � � � bnb ]
T
: (2� 1)



3 A Frequency-Domain Solution
Consider the cross-spectral density

Syu(!) =

1X
k=�1

Efy(t+ k)u(t)ge
�j!k

: (3� 1)

It then follows easily that

H(ej!) = H(q)jq=ej! =
Syu(!)

Suu(!)
: (3� 2)

The basic approach to model parameter estimation con-
sists of two steps. First obtain a consistent estimatorbH(ej!) of H(ej!) via consistent estimators bSyu(!) andbSuu(!) of Syu(!) and Suu(!), respectively, based upon the
input-output record fu(t); y(t); t = 1; 2; � � � ; Tg. Next es-
timate the system parameters using the estimated transfer
function matrix as \data."

3.1 Transfer Function Estimator
Given a record of length T , let Y (!) denote the DFT

of fy(t); 1 � t � Tg given by

Y (!k) =

T�1X
t=0

y(t+ 1)exp(�j!kt); (3� 3)

!k =
2�

T
k; k = 0; 1; � � � ; T � 1: (3� 4)

Similarly de�ne U(!k). Given the above DFT's, follow-
ing [7, Sec. 7.4] we de�ne the cross- and auto-spectrum
estimators as

bSyu(k) = 1

T (2mT + 1)

mTX
i=�mT

Y (!k�i)U
�(!k�i); (3� 5)

bSuu(k) = 1

T (2mT + 1)

mTX
i=�mT

U(!k�i)U
�(!k�i): (3� 6)

Let us choose mT to be such that as T ! 1, we have
mTT

�1 ! 0 and mT ! 1. Let kl(T ) with T = 1; 2; � � �
be a sequence of integers such that limT!1kl(T )=T = fl,
a �xed frequency (in Hz). In light of (3-5) de�ne a coarser
frequency grid:

!l =
2�l

LT
=

2�l(2mT + 1)

T
=

2�l(2BT T + 1)

T
(3� 7)

with l = 0; 1; � � � ; LT � 1 where LT = b T

2mT +1
c. Using

the estimated spectra we have an estimator of the system
transfer function at frequency !k (as in [7, Chapter 8])

bH(ej!k ) = bS�1uu (k)bSyu(k) (3� 8)

provided that bS�1uu (k) exists. If S�1uu (!k) exists, then it
follows from [7, Thm. 8.11.1] that

limT!1
bH(ej2�f ) = limT!1

bS�1uu (k(T ))bSyu(k(T ))
= H(ej2�f) w:p:1 (3� 9)

where limT!1k(T )=T = f . Convergence in (3-9) is uni-
form in f .

As before, let kl(T ) with T = 1; 2; � � � be a sequence
of integers such that limT!1kl(T )=T = fl. We
may take these integers to belong to the coarser grid
fk jk = l(2mT + 1) ; l = 0; 1; � � � ; (LT =2)� 1g. Consider
a �xed set ofM frequencies �l for l = 1; 2; � � � ;M such that
0 � �1 < �2 < � � � < �M < �, where �l = 2�fl. It fol-
lows from [7, Thm. 8.8.1] (see also [7, Thm. 7.4.3] and [7,

Cor. 7.4.3]) that, for large T , bH(ej�l ) for l = 1; 2; � � � ;M
are (asymptotically) jointly complex (circularly symmet-
ric) Gaussian such that for large T

cov
� bH(ej�k); bH(ej�l)

�
= ��1

T �
2(�k) �(k� l) + O(T�1);

(3� 10)

cov
�bH(ej�k ); bH�(ej�l )

�
= O(T�1) (3� 11)

where �T = 2mT + 1,

�
2(�k) :=

Syy(�k)

Suu(�k)

�
1 �

jSyu(�k)j
2

Syy(�k)Suu(�k)

�
: (3� 12)

and covfX;Y g = EfXY �g�EfXgEfY �g. Thus, bH(ej!k )
on the coarse grid (3-7) is asymptotically a complex Gaus-
sian (in the sense of [7, Sec. 4.2]) random variable, indepen-
dent at distinct frequencies on the coarse grid over (0; �),
with the covariance structure (3-10).
Remark 1. In the rest of the paper we will use
!k to denote a frequency on the coarse grid (3-7) with
k = 0; 1; � � � ; LT � 1 but we will use �k to denote a �xed
frequency independent of the record length T . �

3.2 An Equation Error Formulation

Choose � to minimize the cost

J1T (�;M;
L;
U) =
1

M

MX
l=1

���A(ej�l ; �) bH(ej�l)�B(ej�l ; �)

���2
(3� 13)

where 0 � 
L � �1 < �2 < � � � < �M � 
U � �,

B(ej�l ; �) =

nbX
i=1

bi(�)e
�j�li; (3� 14)

A(ej�l ; �) = 1 +

naX
i=1

ai(�)e
�j�li: (3� 15)

Proof of the following result is omitted.
Lemma 1. (A) Under (AS1)-(AS4) such that

0 � 
L � �1 < �2 < � � � < �M � 
U � �,

limT!1J1T (�;M;
L;
U)
w:p:1
= J11(�;M;
L;
U ) uni-

formly in � for � 2 �C , any compact set, where

J11(�;M;
L;
U) =
1

M

MX
l=1

��A(ej�l ; �)H(ej�l)�B(ej�l ; �)
��2

(3� 16)
(B) In addition, let the set of frequencies above
become dense in the interval [
L;
U ] as M !



1 where �i's are spaced uniformly in this inter-

val. Then limM!1limT!1J1T (�;M;
L;
U )
w:p:1
=

J11(�;1;
L;
U ) uniformly in � for � 2 �C where

J11(�;1;
L;
U)

=

Z

U


L

��A(ej!; �)H(ej!)� B(ej!; �)
��2 d!

�
(3� 17)

Remark 2. Suppose that we had access to noise-free
measurements

x(t) := y(t)� v(t) = H(q)u(t): (3� 18)

Consider the time-domain least-squares parameter estima-
tion problem where we �t model G(q) to data fu(t); x(t)g
[4, Sec. 7.1]. Choose � to minimize Ef�2(t)g where

�(t) := x(t) +

naX
i=1

aix(t� i) �

nbX
i=1

biu(t� i): (3� 19)

It has been established in [1] that

Ef�
2(t)g =

Z �

��

��A(ej!; �)H(ej!)�B(ej! ; �)
��2 Suu(!)d!

2�

(3� 20)
If fu(t)g is white with variance �2u then the right-side of (3-
20) equals J11(�;1; 0; �) to within a scale factor. That is,
asymptotically as both T and M ! 1 (see also Theorem
1 in Sec. 4), minimization of (3-13) yields the same mean
estimator and model �t as would have been obtained if the
true system (1-1) were driven by white sequence fu(t)g and
noise-free measurements were available. This then is the
main justi�cation for seeking a frequency-domain solution
given time-domain data. It is known that under noise-free
measurements and white input, the least-squares solution
has some very attractive properties [9]; these are discussed
in Sec. 4. 2

4 Convergence Analysis

De�ne

b�(1)TM = arg fmin�J1T (�;M;
L;
U)g ; (4� 1)

�
(1)

M = arg fmin�J11(�;M;
L;
U )g ; (4� 2)

�
(1)

= arg fmin�J11(�;1;
L;
U)g : (4� 3)

Theorem 1. Under the hypotheses of Lemma 1, it
follows that

limT!1
b�(1)TM

w:p:1

2 D
(1)

M (
L;
U )

:=
n
�

���J11(�;M;
L;
U ) = J11(�
(1)

M ;M;
L;
U)
o
;

(4� 4)

limM!1limT!1
b�(1)TM

w:p:1

2 D
(1)

1 (
L;
U )

:=
n
�

���J11(�;1;
L;
U ) = J11(�
(1)

;1;
L;
U )
o

�

(4� 5)

Proof: Mimic the proof of Theorem 1 in [10] using Lemma

1. Note that the convergence to the set D(1) is to be in-
terpreted in the sense of Ljung [5, p. 215]. 2

The properties of �
(1)

for 
L = 0 and 
U = � have
been studied in [9]. First we need some de�nitions.
Def. Su�cient Order Model Set: The true model
H(q) is of the type (1-3) such that the true model orders
na0 and nb0 satisfy min(na � na0; nb � nb0) � 0. �
Def. Reduced Order Model Set (Undermodeling):
Either the true model H(q) is not of the type (1-3), or it
is but the true model orders na0 and nb0 satisfy min(na �
na0; nb � nb0) < 0. �
It has been shown in [9] that under the su�cient order

case, D
(1)

1 (0; �) equals the set

D
(so) := f� jB(q; �)=A(q; �) = H(q)g : (4� 6)

Under undermodeling and 
L = 0 and 
U = �, by

[9, Prop. 2], the zeros of A(q; �
(1)

) lie in the open unit

disk; hence the �tted model bG(q) = B(q; �
(1)

)=A(q; �
(1)

)
is stable. Moreover, under undermodeling, 
L = 0 and


U = �, �
(1)

is unique (i.e. D
(1)

1 (0; �) is a singleton), and

J11(�
(1)

; 0; �) > 0.
Using the above results from [9] and Theorem 1, the

following result is immediate.
Theorem 2. Under the hypotheses of Lemma 1, 
L = 0,

U = � and undermodeling,

limM!1limT!1
b�(1)TM

w:p:1
= �

(1)

where �
(1)

is unique such that the zeros of A(q; �
(1)

) lie

in the open unit disk; hence the �tted model bG(q) =

B(q; �
(1)

)/A(q; �
(1)

) is stable. Moreover, bg(i) = h(i) for

i = 0; 1; � � � ; nb where bG(q) =
P

1

i=0
bg(i)q�i and h(i) is

as in (1-2). Under (AS1)-(AS4), 
L = 0, 
U = � and
su�cient order modeling,

limM!1limT!1
b�(1)TM

w:p:1

2 D
(so)

:

If min(na � na0; nb � nb0) = 0, then D(so) is a singleton.
�

Using [3, Lemma 5] and Theorem 1, the following result
is immediate.
Theorem 3. Under (AS1)-(AS4), 
L > 0, 
U < �
and su�cient order modeling such that na + nb � 2M , it
follows that

limT!1
b�(1)TM

w:p:1

2 D
(so)

:

If min(na � na0; nb � nb0) = 0, then D(so) is a singleton.
�

5 Performance Analysis
We now state some results without any proofs. We will

use the short notation J 01T (�) for J1T (�;M;
L;
U ). Also

we will use �
(1)

for both �
(1)

M and �
(1)

, it being clear from
context as to which is meant. Let 5� denote the gradient
operator w.r.t. vector �. Similarly denote the Hessian

matrix by 52

��J whose ij-th element is @2J

@�i@�j
.



It can be shown that b�(1)TM is asymptotically Gaussian

with mean �
(1)

and

cov
nb�(1)

TM
; b�(1)

TM

o

=
LT

TM

h
5

2

��J
0

1T (�
(1)

)
i�1

��M

h
5

2

��J
0

1T (�
(1)

)
i�1

+O(T�1)

(5� 1)
where

5
2

��J
0

1T (�
(1)

)
T!1
=

1

M

MX
l=1

�
ClC

H

l + C
�

l C
T

l

�
w:p:1;

Cl =

�
e
j�lH

�(ej�l)
... � � �

...ejna�lH�(ej�l)
...� e

j�l
... � � �

...� e
jnb�l

�T

��M =
1

M

MX
l=1

�
2(�l)

�
FlF

H

l +F
�

l F
T
l

�
;

Fl = A(ej�l ; �
(1)

)Cl + E l(�
(1)

)C�lg ;

E l(�
(1)

) = A(ej�l ; �
(1)

)H(ej�l) � B(ej�l ; �
(1)

);

Clg =

�
e
j�l

...ej2�l
... � � �

...ejna�l
...0
... � � �

...0

�T
:

Theorem 4. Under (AS1)-(AS4) and undermodeling,q
TM

LT

�b�(1)TM � �
(1)
�
is asymptotically Gaussian with zero-

mean and covariance matrix speci�ed by (5-1). The same

result holds true under su�cient order modeling if D(so) is
a singleton. �

TABLE I : �th { theoretical �, �sim { � from simulations

Parameters a1 a2 b1 b2
True Values �1.500 0.700 1.000 0.500
Approach estimate statistics: T = 1024, SNR=10dB

Proposed mean �1.465 0.668 0.991 0.524
(Sec. 3.2) �sim �0.017 �0.015 �0.044 �0.058
(freq-dom.) �th �0.014 �0.012 �0.040 �0.050

RMS (0.039) (0.036) (0.045) (0.063)

Least-Sq. mean �0.710 �0.040 0.992 0.807
(time-dom.) �sim �0.035 �0.033 �0.045 �0.044

RMS (0.791) (0.740) (0.046) (0.310)

[1] mean �1.452 0.627 0.989 0.514
(time-dom.) �sim �0.038 �0.038 �0.041 �0.081

RMS (0.061) (0.082) (0.042) (0.082)

6 Simulation Example
The true system model is

H(q) =
q�1 + 0:5q�2

1� 1:5q�1 + 0:7q�2

and the measured input is u(t) = (1 + 0:8q�1)�1 w(t)
where fw(t)g is i.i.d., binary (�1 with prob. 0.5 each). The
measurement noise is colored Gaussian given by v(t) =
(1 � 0:95q�1)�(t) where �(t) is i.i.d. zero-mean Gaussian.

The simulation results based on 100 Monte carlo runs
are shown in Table I for the approaches proposed in Sec.
3.2 under the su�cient-order case with na = na0 = 2 and
nb = nb0 = 2. We also show the theoretical standard
deviations for the parameter estimates. These were calcu-
lated using the expression (5-1) with mean values of the

estimated parameters as �
(1)

. In applying the proposed ap-
proaches, we selected 2mT+1 = 11 for the record length of
T = 1024. The number of frequency points M was taken to
be all the points on the coarse grid (3-7) that lie in (0; �).
For comparison we also show the results obtained using
the classical least-squares algorithm ([4, Sec. 7.1]) and the
modi�ed least-squares algorithm of [1]. Both of these ap-
proaches are time-domain approaches. The approach of [1]
is designed to provide unbiased estimates for model (1-1)
when fv(t)g is white. It should be noted that [1] does not
�t a model such as (1-3); rather, [1] �ts

Pn

i=0
biq

�i

1 +
Pn

i=1
aiq�i

: (6� 1)

In Table I we do not display b0.
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