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ABSTRACT

We investigate the applicability of two algorithms for the
blind identi�cation of mixed-phase linear time-invariant FIR
systems to the estimation of mobile radio channels on GSM
conditions. One approach is based on Second Order Cyclo-
stationary Statistics (SOCS), whereas the other exploits
Higher Order Stationary Statistics (HOSS) of the received
signal. While the former class of algorithms su�ers from
\singular" systems which can not be identi�ed, the latter
class is said to require an excessive number of samples of the
received signal to achieve comparable performance levels.
The purpose of this paper is two-fold: �rst, we demonstrate
that \singular" systems represent a severe limitation to
SOCS-based methods when it comes to the estimation of
time-variant mobile radio channels from a small number of
received samples. Secondly, we reveal that the approach
relying on 4th order statistics yields a superior estimation
performance: At a signal-to-noise-ratio of 10 dB, all channel
examples can be identi�ed from 142 samples of a GSM burst
within a normalized mean square error bound of 7 per cent.

1. INTRODUCTION

L
ET us regard the problem of system identi�cation from
the viewpoint of channel estimation in a digital commu-

nication system. Maximum Likelihood Sequence Estimation

(MLSE) represents the optimum procedure to remove inter-
symbol interference from a received digital communication
signal corrupted by linear channel distortions and additive
white noise. It requires the knowledge, i.e. the estimation,
of the possibly mixed-phase equivalent symbol-rate impulse
response of the multipath radio channel which, in a mo-
bile environment, is time-variant. In many applications,
time-variance is relatively slow so that the channel can be
estimated repeatedly in periods of time where it can be
assumed time-invariant (piecewise time-invariant).

Application: Consider the channel estimation scheme used
in state-of-the-art mobile communication systems according
to the GSM standard (Global System for Mobile commun.).
Information symbols are transmitted in bursts where each
\normal" burst contains two packets of 58 data symbols
(bits) surrounding a training sequence of 26 bits (see Fig. 1).
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Symbol-rate channel estimates can be derived from the cross-
correlation between the received (corrupted) and the stored
(ideal) training sequences, i.e. from a 2nd order statistical
property of (piecewise) stationary sequences. However, the
repeated transmission of training sequences leaves a GSM
system with an overhead capacity of 26=116 = 22:4% which
could be used for other purposes such as channel coding, if
the channel estimation problem was solved blindly.
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Figure 1: GSM \normal" burst

The fundamental idea of blind system identi�cation is to
derive the channel characteristics from the received signal
only, i.e. without training sequences. Depending on the dif-
ferent ways to extract information from the received signal,
two classes of algorithms can be distinguished:

Class HOSS:When the received signal is sampled at sym-
bol rate 1=T , the resulting sequence is (piecewise) station-
ary. Since second order statistics of a stationary signal are
inadequate for the identi�cation of the complete channel
characteristics (including phase information), class HOSS
methods are based on Higher Order Stationary Statistics.
Higher order cumulants contain the complete information
on the channel's magnitude and phase provided that the
distribution of the channel input signal is non-Gaussian.

Class SOCS: When the sampling period is a fraction of T
(time diversity), or alternatively, the symbol-rate sampled
signals received by several sensors are interleaved (anten-
nae diversity), the resulting received sequence is (piecewise)
cyclostationary. Generally, Second Order Cyclostationary

Statistics (SOCS) are su�cient to retrieve the complete
channel characteristics, but there are \singular" channel
classes which can not be identi�ed this way.

Remark: Although the non-blind GSM channel estimation
scheme assumes time invariance of the channel during the
transmission of the 26 training bits only, the resulting esti-
mate is used by MLSE (Viterbi) on the adjacent data �elds.
As the channel coe�cients might already have changed in
the data �elds, there is an implicit assumption of piecewise
time-invariance over one burst in this concept. Therefore,
blind channel estimation approaches may also suppose this.

In summary, a blind channel estimation algorithm for such
an application should satisfy the following requirements:



(1) Exploit SOCS or 4-th order statistics. Methods based
on 3rd order stationary statistics were discarded due to
the zero skewness of digital communication signals.

(2) Reliable (complex) channel estimates must be
obtained from 142 symbol-rate samples, only.

(3) As the time-variant e�ective channel order is unknown,
an overestimation must not represent a problem.

(4) Robustness with respect to additive Gaussian noise at
S=N ratios down to (at least) 10 dB, if possible 7 dB.

Selected algorithms: Among the SOCS approaches we
have considered for application, the TXKmethod suggested
by Tong et al. [1] gave the best results. The Subchannel
Response Matching algorithm by Schell et al. [2] does not
meet requirement (3) while the Subspace Algorithm by
Moulines et al. [3] su�ers from the problem of di�erentiating
between signal and noise subspace eigenvalues, which is
quite sensitive to additive noise. Within the HOSS class,
the EigenVector approach to blind Identification
(EVI) by Boss et al. [4] was found to outperform the W-
Slice method1 by Fonollosa et al. [5].

After a detailed problem statement in section 2, we will
demonstrate in section 3, how TXK and EVI perform on
realistic mobile radio channels on GSM conditions.

2. PROBLEM STATEMENT

2.1. Blind estimation of time-invariant FIR systems

Assumptions: Consider a digital communication system
where, each symbol period T , the i.i.d. random sequence
d(k) takes a value from a �nite set2. In a stationary prop-
agation scenario, the equivalent baseband representation of
the composite channel (physical multipath radio channel
as well as pulse shaping and receive �lters) is given by
a continuous-time time-invariant impulse response hc(� ),
where the subscript `c' stands for `continuous-time'.

Sampling the channel output xc(t) =
P

k
d(k)hc(t � kT )

at M times the symbol rate to obtain x(i) = xc(t)jt=iT=M
can be described by convolving the upsampled transmitted
sequence with the discrete-time channel impulse response

h(i)
�
= hc(�)j�=iT=M ; (1)

which we assume to have �nite length (see Fig. 2). Note
that the time indices k and i refer to samples spaced T and
T=M seconds apart, resp.. The channel output sequence

⊕

Channel

FIRupsampling

�

Figure 2: Equivalent discrete-time comm. system model

x(i) is corrupted by independent stationary additive Gaus-
sian noise n(i), which has been colored by the upsampled
receive �lter impulse response. Just as x(i) and xc(t), the
upsampled received sequence y(i) is cyclostationary .

1A performance comparison will be published in the near future.
2For notational simplicity, we assume zero mean processes.
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Figure 3: Stationary polyphase representation of y(i)

According to Gardner's Time Series Representation, y(i)
can be decomposed into M stationary sequences (Fig. 3)

y�(k) = x�(k) + n�(k) = d(k) � h�(k) + n�(k) (2)

with � = 1; � � � ;M . The sequences x�(k), n�(k), and y�(k)
with T -spaced samples denote the �-th polyphase compo-

nent of the respective signal sampled at rate M=T , e.g.
y�(k) = y(i)ji=kM+��1. Equally, h�(k) = h(i)ji=kM+��1

represents the �-th polyphase subchannel of h(i).

Objective: Given solely y(i) (or equivalently, y�(k)), esti-
mate h(i) or h�(k), � = 1; � � � ;M , respectively. Note that
all polyphase subchannels are to be estimated in this paper,
although MLSE just requires one symbol-rate estimate.

Remark: Tong et al. and Tugnait have proven ([6], e.g.)
that h(i) is not identi�able by class SOCS algorithms from
the cyclostationary correlation sequence of y(i), if, e.g., the
z transform H(z) = Z fh(i)g has a set of M zeros spaced
equidistantly on a circle with center in z = 0. In this case,
the M subchannels H�(z) = Z fh�(k)g have at least one
common zero. Such channels will be called \singular".

2.2. Mobile radio communication channel model

On the assumption of a stationary propagation scenario, we
have derived two equivalent discrete-time (time-invariant)
models of a digital communication system (see Fig. 2, 3).
In a mobile setting, however, the channel is time-variant.
Thus, its impulse response hc(�) not only depends on the
time di�erence � between the observation and excitation
instants, but also on the (absolute) observation time t.

We adopt a stochastic Gaussian Stationary Uncorrelated

Scattering (GSUS) model for the physical multipath chan-
nel. For slow time-variance, the composite channel's equiva-
lent baseband impulse response can be approximated by [7]

hc(�; t) =
1p
Ne

NeX
�=1

exp[j(2�fd;� t+��)] �gTR(����) ; (3)

where Ne indicates the number of elementary echo paths
and gTR(� ) denotes the combined transmit/receive �lter
impulse response. Sample channel impulse responses can
be calculated from (3) by independently drawing (i) Ne

Doppler frequencies fd;� from a random variable with Jakes
probability density function (pdf), (ii) Ne initial phases ��

from a uniformly distributed random variable in [0; 2�), and
(iii) Ne echo delay times �� from a random variable with
a pdf proportional to the mean power delay spectrum of a
propagation environment de�ned by COST-2073, e.g.: Typ-
ical Urban (TU), Bad Urban (BU), Hilly Terrain (HT) ...

3Cooperation in the �eld of Scienti�c and Technical research.
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Figure 4: Impulse response of a Bad Urban channel

Fig. 4 shows a (non-causal) sample magnitude impulse re-
sponse jhc(�; t)j, obtained from (3) with Ne = 100, of a Bad
Urban channel with raised cosine transmit and receive �lters
(r = 0:5). Both time axes are normalized to the GSM sym-
bol (bit) period T � 3:7 �s. The velocity of the mobile unit
is v = 100 km=h. Assuming a carrier frequency of 950 MHz,
this leads to a maximum Doppler shift of fd;max = 88 Hz.
Equation (3) was evaluated over a t range covering one
minimum Doppler period Td;min = 1=fd;max = 3080T .

Assuming piecewise time-invariance over one burst, hc(�; t)
is sampled on the t axis each 150 symbols (c.f. Fig. 1). This
produces 21 slices within the t range of 3080T , which can
be seen in Fig. 4 as surface lines parallel to the � axis. Each
slice is sampled at � = iT=M and then constrained to the
range I of indices i where the associated sample power delay
spectrum exceeds the threshold of 1% of its peak value.

h(i; �)
�
= hc(�; t) for

n
� = iT=M with i2I
t = � 150T with � = 0; � � � ; 20. (4)

The simulation results we present in the following section
are based on linear modulation, although GSM prescribes
non-linear GMSK (Gaussian Minimum Shift Keying). How-
ever, as linearity is also assumed in typical GSM receivers,
the results for GMSK are not expected to change much.

3. SIMULATION RESULTS

On the assumptions stated in sec. 2.2, nine di�erent sam-
ple GSUS composite channels were obtained from (3) by
combining three COST-207 propagation environments (TU,
BU, HT) with three raised cosine transmit/receive �lters:
roll-o� factors r2f0:9; 0:5; 0:1g. Let \BU{(0.5)" denote
the Bad Urban channel with roll-o� factor r = 0:5, e.g..
Using double symbol-rate sampling (M = 2) in eq. (4),
each channel hc(�; t) was decomposed into 21 slices h(i; �).
Referring to Fig. 2 with h(i; �) substituted for h(i), a burst
of 150 i.i.d. BASK (Binary Ampl. Shift Keying) symbols
d(k) was propagated through each channel slice. The re-
sulting cyclostationary sequence x(i) was limited to a block
of ML = 2 � 142 steady state samples. Finally, independent
additive Gaussian noise n(i), colored by the receive �lter

sampled at rate 2=T , was added according to a given mean
signal-to-noise ratio �S=N to obtain ML samples of y(i).

TXK was applied to y(i), while EVI operates at symbol rate
and was therefore executed on the two polyphases y1(k) and
y2(k) according to Fig. 3. In either case, L = 142 symbol
periods of the received signal were taken into account for
the estimation of the required correlation and cumulant
sequences by unbiased sample averaging. Both approaches
were given the e�ective length of the sample power delay
spectrum, which is equivalent to the mean length of the
channel impulse response. Note that the actual e�ective
length of a channel slice may well be shorter due to time
selective fading. Since the noise sequence n(i) is colored, no
algorithm attempted to compensate for the noise in
uence.
In any case, enabling the TXK white noise cancellation
scheme did not improve the results quoted below.

Estimation quality measure: Let ĥ(1)(i; �) denote the
estimate of h(i; �) based on a given input burst. In the
frame of Monte-Carlo simulations, a total of MC = 100 dif-
ferent BASK bursts was propagated through each channel
slice to obtain MC estimates ĥ(
)(i; �), 
 = 1; � � � ;MC. For
each slice index �, estimation quality was assessed on the
basis of the averaged Normalized Mean Square Error4

NMSE(�)
�
=

1

MC

MCX

=1

P
i
jĥ(
)(i; �)� h(i; �)j2P

i
jh(i; �)j2

: (5)

Figure 5: From the set of 9 sample channels, we have se-
lected four \critical" examples with relatively long impulse
responses: HT{(0.5), BU{(0.1): 7T ; HT{(0.1): 8T ; BU{

(0.5): 5T . For each channel, Fig. 5 shows the NMSE(�)-
values (in per cent) of TXK's and EVI's estimates for dif-
ferent values of �S=N , where the noiseless case is marked by
\�" symbols, while \�" and \+" stand for �S=N = 10 dB
and 7 dB, respectively. The NMSE(�)-values for TXK [EVI]
are connected by solid [dotted] lines, respectively, where the
TXK results at 7 dB are suppressed to enhance clarity.

We realize from Fig. 5a and b that in the noiseless case (\�")
both approaches can principally estimate the HT channels
very well (NMSE(�) from 3 to 5%). However, TXK can not
identify slices � = 1 to 4 of HT{(0.5) (Fig. a) and slice 9
of HT{(0.1) (Fig. b). This is due to subchannel zeros of
H1(z; �) and H2(z; �)

5, which accidentally are very close
to each other in these slices (distances of 0:002 and 0:008,
resp.). Comparing the results at �S=N = 10 dB (\�"), it is
obvious that EVI outperforms TXK: if we average NMSE(�)
over all slices � to obtain NMSE, TXK delivers values (19:4
and 23:3% for Fig. a and b) which are more than 3 times
higher than those of EVI (5:5 and 7:3%, resp.). Even at
7 dB (\+"), EVI performs better than TXK at 10 dB.

With the BU channels in Fig. 5c,d (note that the channel
used for Fig. 5c was shown in Fig. 4), EVI's NMSE-values at
10 dB can barely be distinguished from those in the noiseless
case, because NMSE is inferior to 3% (Fig. c) and 5%

4As all blind system identi�cation algorithms can not identify
one complex factor, each estimate was multiplied with the
optimum complex constant (minimizing the Euclidean distance
from the true channel slice) before NMSE was calculated.
5where H�(z; �) is the z transform of subchannel � of h(i; �).
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Figure 5: NMSE(�) in % of TXK(solid) and EVI (dotted):
\�": �S=N =1, \�": 10 dB, \+": 7 dB

(Fig. d). On the other hand, TXK's performance is heavily
a�ected at 10 dB, since NMSE rises to 16:2% and 21:4%,
resp.. Thus, EVI's estimation performance is superior by
an average factor of 5. Moreover, EVI's NMSE(�) levels are
smaller at 7 dB (\+") than those of TXK at 10 dB, again.

�S=N HT{(0.9) HT{(0.5) HT{(0.1) Fac.

1 dB (2.3) / 3.4 (7.0) / 4.1 (4.7) / 5.2 1.1
10 dB 15.1 / 4.7 19.4 / 5.5 23.3 / 7.3 3.3
7 dB 16.0 /10.6 20.4 /11.6 22.6 /15.2 1.6

�S=N BU{(0.9) BU{(0.5) BU{(0.1) Fac.

1 dB 1.3 / 1.7 2.6 / 2.4 (6.4) / 4.1 1.1
10 dB 13.3 / 2.0 16.2 / 2.8 21.4 / 4.9 5.6
7 dB 15.0 / 2.6 17.2 / 3.6 21.7 / 8.6 4.4

�S=N TU{(0.9) TU{(0.5) TU{(0.1) Fac.

1 dB 0.3 / 0.5 1.9 / 1.5 4.4 / 3.3 1.1
10 dB 4.0 / 0.6 12.0 / 1.8 18.2 / 3.9 6.0
7 dB 7.9 / 0.8 12.6 / 2.3 18.6 / 5.2 6.3

Table 1: NMSE in % for TXK's / EVI's estimates
of HT (above), BU and TU (below) channels

Table 1 provides the NMSE-values for the entire channel
set. In columns 2-4, the �rst (2nd) entry refers to TXK
(EVI), where those heavily a�ected by outliers are given in
parenthesis. Compared with Fig. 5, we realize that channels
with a short impulse response (resulting from a propagation
environment with a small delay spread or transmit/receive
�lters with a high roll-o� factor r) are less critical for both
algorithms. However, the statements concerning the per-
formance comparison remain una�ected, as can be seen

from the last column, where the mean factor by which EVI
outperforms TXK is quoted for each �S=N and environment.

It should be noted that TXK su�ers from a threshold prob-
lem, because it needs to distinguish between signal and
noise subspace singular values of a correlation matrix. To
improve performance in the noisy case, TXK was given the
mean noise power (averaged over all channel slices), which
is, in the strict sense, illegal a-priori knowledge.

4. CONCLUSIONS AND FURTHER WORK

We have demonstrated that \singular" channels represent
a signi�cant limitation to SOCS-based methods because
in mobile environments, subchannel zeros can not be pre-
vented from colliding. We have also shown that it is possi-
ble with an algorithm exploiting HOSS to blindly estimate
(within an NMSE-bound of about 7%) realistic mobile radio
channels from 142 received samples at �S=N levels of 10 dB.
Even at 7 dB, many sample channels could be identi�ed.

While this paper concentrated on the quality of blind chan-
nel estimation, further work will be directed towards a com-
parison of the post-MLSE bit error rates (BER) attainable
from blind and non-blind channel estimates. The decisive
question is whether BER is lower (i) if non-blind estimates
of the mean channel coe�cients (averaged over 26 bit peri-
ods) are applied to MLSE of 116 data bits, or (ii) if blind
estimates of the mean channel coe�cients (averaged over
142T ) are utilized for the whole sequence of 142 data bits.
First simulation results were obtained recently and will be
published in the near future (also see our WWW server).
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