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ABSTRACT

We present two approaches to stochastic Maximum Like-
lihood identi�cation of multiple FIR channels, where the
input symbols are assumed Gaussian and the channel de-
terministic. These methods allow semi-blind identi�cation,
as they accommodate a priori knowledge in the form of
a (short) training sequence and appears to be more rel-
evant in practice than purely blind techniques. The two
approaches are parameterized both in terms of channel co-
e�cients and in terms of prediction �lter coe�cients. Cor-
responding methods are presented and some are simulated.
Furthermore, Cramer-Rao Bounds for semi-blind ML are
presented: a signi�cant improvement of the performance
for a moderate number of known symbols can be noticed.

1. INTRODUCTION

Consider a sequence of symbols a(k) received through m

channels y(k) =
PN�1

i=0
h(i)a(k�i) + v(k) = HNAN (k) +

v(k), y(k) = [yH1 (k) � � � y
H
m(k)]

H , HN = [h(N�1) � � �h(0)],

AN (k) =
�
a(k�N + 1)H � � �a(k)H

�H
, where superscript H

denotes Hermitian transpose. LetH(z) =
PN�1

i=0
h(i)z�i =

[HH1 (z) � � �H
H
m(z)]

H be the SIMO channel transfer function,

and h =
�
hH(N�1) � � �hH(0)

�H
. Consider additive in-

dependent white Gaussian noise v(k) with rvv(k�i) =

E v(k)v(i)H = �2vIm �ki. Assume we receive M samples:

Y M (k) = TM(HN )AM+N�1(k) + V M(k) (1)

where Y M(k) = [yH(k�M+1) � � �yH(k)]H and similarly
for V M(k), and TM (HN) is a block Toepliz matrix with
M block rows and [HN 0m�(M�1)] as �rst block row. We
shall simplify the notation in (1) with k =M�1 to

Y = T (H)A+ V : (2)

We assume that mM > M+N�1 in which case the chan-
nel convolution matrix T (H) has more rows than columns.
If the Hi(z); i = 1; : : : ;m have no zeros in common, then
T (H) has full column rank (which we will henceforth as-
sume). For obvious reasons, the column space of T (H) is
called the signal subspace and its orthogonal complement
the noise subspace.
We propose two stochastic Maximum Likelihood (ML)

approaches in which the symbols are assumed Gaussian.
These methods can easily accommodate a priori knowledge
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in the form of a (short) training sequence: we call the cor-
responding equalization methods semi-blind. It does not
appear to be easy to incorporate such a priori information
in other methods such as subspace �tting techniques. Con-
sidering actual mobile communication standards and on the
basis of robustness considerations, semiblind equalization
appears to be more relevant in practice than purely blind
equalization. The robustness improvements of the semi-
blind approach will be illustrated via an analysis of the
Cramer-Rao bound (CRB) and simulations.

2. DETERMINISTIC ML

In the Deterministic (or conditional) Maximum Likelihood
(DML) method, both the channel H and the symbols A are
considered as deterministic quantities. We introduced the
DML method for blind channel estimation in [1] for m = 2
channels and we extended it to arbitrary m in [2]. An exten-
sion to the multi-user case was introduced in [3],[4]. The
key to a computationally attractive solution of the DML
problem is a linear parameterization of the noise subspace
since the DML criterion boils down to a projection on the
noise subspace. Such a parameterization has been proposed
in [2], based on cyclic prediction �lters for the noise-free re-
ceived signal. Further discussions can be found in [5] and
[6].

3. CHANNEL-BASED STOCHASTIC ML.

In stochastic ML, the input symbols are no longer deter-
ministic, but Gaussian quantities. ML estimation with a
Gaussian prior for the symbols has been introduced in [5].
The Gaussian hypothesis would have for e�ect to robustify
DML. Two stochastic ML approaches can be pursued.

3.1. Two Gaussian Prior Approaches

We consider a general problem where the received signal
is Y = T (H)A + V : V � N (0;RV V ) is independent of
A � N (Ao;RAA) (complex normal variables are assumed to
be circular). Ao, the prior mean for the symbols, represents
a prior knowledge on the symbols, which will be specialized
below to the semi-blind case.
In a �rst approach, which we call Gaussian ML (GML),

only the channel is being estimated, not the symbols, as well
as RV V . It corresponds to the classical approach in Stochas-
tic Direction of Arrival Estimation. In the ML problem, the
quantity to be maximized is f(Y =�), the complex probabil-
ity density function of Y given � = [ h RAA RV V ]:

f(Y =�)=
1

�M detRY Y
exp

�
�(Y �T Ao)H R

�1
Y Y (Y �T Ao)

�
(3)

where: RY Y = T RAAT
H + RV V . The corresponding log-

likelihood function to be minimized is:

ln(detRY Y ) + (Y � T Ao)H R
�1
Y Y (Y � T Ao) (4)



In a second approach, both h and A are being estimated
as well as RV V : maximum a posteriori (MAP) for A and
ML for h and RV V . We call this method GMAPML. The
quantity to be maximized is:

f(Y ;A=h;RV V ) = 1

�(m+1)M+N�1 detR

exp
�
� (Y 0 � T 0A)

H
R�1 (Y 0 � T 0A)

�
(5)

with: R =
h
RV V 0
0 RAA

i
, Y 0 =

�
Y H AoH

�H
and

T 0 =
�
T H IH

�H
. The corresponding log-likelihood

function to be minimized is:

ln(detR) +
�
Y
0 � T 0A

�H
R
�1
�
Y
0 � T 0A

�
(6)

3.2. Relationship between the two Approaches.

The minimization of (6), being separable in A and h, is
usually done by minimizing w.r.t. A �rst:

A =
�
T H

R
�1
V V T +R

�1
AA

��1 �
T H

R
�1
V V Y + R

�1
AAA

o
�

(7)

which is of the form of a MMSE non-causal decision-
feedback equalizer (NCDFE), being a MMSE linear esti-
mator in terms of the received data Y and the uncertain
preliminary symbols Ao with uncertainty reected in RAA.
Note that when Ao = 0 (blind case), the estimate for
the symbols corresponds to the output of a MMSE linear
equalizer. This illustrates the superiority of the GMAPML
method over the DML method, for which the symbol esti-
mates are given by the output of a MMSE ZF linear equal-
izer.
Substituting (7) in (6) results in the minimization of:

ln(detR) + (Y � T Ao)
H
R
�1
Y Y (Y � T Ao) (8)

If we suppose R known, GMAPML appears to be a sim-
pli�ed version of GML from which the term ln(detRY Y )
has been removed.

3.3. Semi-Blind Estimation

We specialize now this general formulation to the case of
semi-blind equalization in which we use a partial training
sequence and a Gaussian prior for the remaining unknown

symbols. Let A = P
�
AoH1 AH2

�H
where Ao1 are the training

symbols and P is a permutation matrix to account for the
fact that the training sequence does not necessarily occur
at the beginning. Hence we have

A
o = P

h
Ao1
0

i
; RAA = �

2
aP

h
�I 0
0 I

i
PH (9)

where we shall let �
>
! 0. Also, as mentioned earlier, we

take RV V = �2vI.

3.4. Cramer-Rao Bounds

GML estimates reach asymptotically their Cramer-Rao
Bound (CRB). In GMAPML, however, the input symbols
estimates cannot be consistent because their number is
asymptotically in�nite. Hence, joint estimates of A and
h cannot be consistent and do not reach their CRB.
A comparison in terms of CRB between both methods

is not meaningful. GML appears however to give better
performance. Whereas DML cannot estimate the module
of the channel, the introduction of the Gaussian assumption
allows this estimation in GML, but not in GMAPML. For
a channel of length N = 1, GMAPML gives an estimate of
the normalized channel in the same direction as GML, but
with a in�nite module. We will now consider the complex
CRBs for GML and GMAPML.

3.4.1. GML
The Fisher Information Matrix (FIM) for deterministic

complex parameters � is de�ned as:

J(�) = �EY
@

@��

�
@ ln f(Y=�)

@��

�H

: (10)

J(�)�1 is the complex CRB: C~�~� � J(�)�1, where C~�~� =

E~�~�H , ~� = ���̂, E~� = 0. The parameters are � =�
hH �2v

�H
.

J(�)(i; j) =
�
AoHR�1

Y YA
o
�
i;j

+trace

�
R�1
Y Y

�
@RY Y
@��
i

�
R�1
Y Y

�
@RYY
@��
j

�H�
;

(11)
T (H)Ao = Aoh, Ao is a structured matrix �lled with the
elements of Ao.

@RY Y

@h�i
= T (H)RAAT

H

�
@H�

@h�i

�
@RY Y

@�2v
= �2vI:

(12)
Note that those expressions apply to the general case of
sections 3.1. and 3.2.. The real FIM corresponding to the
estimation of the real and imaginary part of the channel
is singular: indeed the phase of the channel cannot be es-
timated. The complex FIM is not singular: the complex
CRB gives a lower bound for a channel estimate for which
the correct phase factor is known.

3.4.2. GMAPML

The estimate parameters are � =
�
AH hH �2v

�H
.

The FIM for stochastic parameters is:

J(�) = �EY;�
@

@��

�
@ ln f(Y; �)

@��

�H

: (13)

Applied to our problem where A is stochastic and h, �2v
deterministic, the FIM is:

J(�) = �EY;A
@

@��

�
@ ln f(Y;A=h; �2v)

@��

�H

: (14)

The CRB for h is:

�
2
v

"
M�

2
aI�A

oHT2

�
T H
2 T2+

�2v
�2a

I

��1

T H
2 Ao

#�1

(15)

where T A = T1A
o
1 + T2A2. In the blind case, the CRB is

�2v
M�2a

I. It corresponds asymtotically to the CRB when all

input symbols are known. This CRB for GMAPML appears
to be much too optimistic.

3.4.3. Simulations
We present some simulations to illustrate the e�ect of the

number of known symbols on the CRB for GML. We plot
the trace of the CRB normalized w.r.t. the channel module
and the number of channel coe�cients. The SNR, de�ned

as
kHk2�2a
m�2v

is of 10dB, M=50. The channel is:h
1:0000 0:8000
�1:5000 1:4000

i
:

We notice the signi�cant improvement of semi-blind equal-
ization as more and more symbols are known, especially
with few known symbols. Furthermore, the estimation of
�2v, which is also done in GML, does not inuence much the
performance of channel estimation itself.
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aged over 100 noise realizations) for PQML, N=1

3.5. Methods

3.5.1. Pseudo-Quadratic ML (PQML)

The principle of this method has been applied to sinusoids
in noise estimation [7] as well as to channel-based DML
in equalization [8]. In this last method, the gradient of
the cost function C(h) to be minimized may be written
as B(h)h, where B(h) is positive semi-de�nite. In a �rst
step B(h) is considered as constant: we have the equivalent
to a quadratic problem, and the solution is the minimal
eigenvector of B(h), this solution is used to reevaluate B(h)
and other iterations may be done.
For blind GML, the decomposition is of the form B(h)h,

for semi-blind GML, it is of the form B(h)h+D(h), where
B(h) is now positive de�nite. For the semi-blind GML,
both B(h) and D(h) are supposed constant in the �rst step
of the procedure, h is the solution of a linear system. The
di�culty is to �nd the right decomposition.
For a channel of length 1, we derived the PQML method,

the general case is still under study. In �g.1, we show
the normalized errors on h, at each step of PQML for 20
known symbols and SNR=10dB. The channel considered is

[ 1 �1:5 ]H .

3.5.2. Approximate semi-blind DML
The following one-shot method can be used in its own

right or as initialization step for PQGML. For conciseness,
we shall explain the case ofm = 2 channels. Several popular
methods are based on the observation that for the noise-
free signals, we have H2(z)y1(k) � H1(z)y2(k) = 0 or in

matrix form T (H2)Y
(2)

2 � T (H1)Y
(2)

1 = Y(2)h = 0 where
superscript (2) denotes the data used for the blind part.
In the presence of noise, we can solve this equation in a

least-squares sense for h. Let Y (1) denote the data corre-

sponding to the training symbols Ao1. If Y
(1) and Y (2) do

not overlap, then an optimally weighted semi-blind least-
squares criterion is

min
h

� Y (1)

0

�
�

�
Ao

Y(2)

�
h

2h I 0
0 W�1

i (16)

where in W = T (H1)T
H(H1) + T (H2)T

H(H2) the
two terms can be estimated consistently from
1

�2a

�bRY Y � �min( bRY Y )I�.
4. PREDICTION BASED STOCHASTIC ML.

The GMAPML minimization criterion can be parametrized
in terms of linear prediction quantities, which has for ad-
vantage to be robust to channel order overestimation. The
extended noise subspace (corresponding to T 0) can be lin-

early parametrized. Let T
0?(G), parameterized by G, be of

full column rank equal to the noise subspace dimension such

that T
0?HT

0

= 0. Then also
�
RH=2T

0?
�H �

R�1=2T
0

�
=

0.
After substituting A from (7) in (6), we get:

min
H

P?R�1=2T
0R

�1=2
Y

0

2 = min
G

PRH=2T 0?R�1=2
Y

0

2
= min

G
Y

0HT
0?
�
T
0?H

R T
0?
��1

T
0?H

Y
0

(17)
The signal subspace is parameterized linearly byH. Now

let P(z) =
PL

i=0
p(i) z�i with p(0) = Im be the MMSE

multivariate prediction error �lter of order L for the noise-
free received signal y(k). If L � L = dN�1

m�1
e, then it can be

shown [9] that
P(z)H(z) = h(0) : (18)

From (18) it is clear thatH(z) and P(z);h(0) are equivalent
parameterizations.
For the noise subspace parameterization, note that from

(18) we get

TM�L(P )TM (H)=
�
0(M�L)�(L+N�1) IM�L

�

 h(0)=

~I 
 h(0) )
�
TM�L(P ) �~I 
 h(0)

�
T
0

(H) = 0

(19)
However

Range

��
TM�L(P ) �~I 
 h(0)

�H�
�
�
Range

�
T
0
��?
(20)

(the noise subspace is not completely spanned) so that re-

placing T
0?H by

�
TM�L(P ) �~I 
 h(0)

�
in (17) (with

the role of G played by p(1 : L);h(0)) leads to estimates
that are only asymptotically (in M) equal to the ML esti-
mates.
We shall specialize now this general formulation to the

case of semi-blind equalization. (17) now becomes:

min
p(1:L);h(0)

T (P )Y � (~IP
h
Ao1
0

i
)
 h(0)


R�1

(21)

R = �2vT (P )T H(P )+
�
~IRAA ~I

H
�


�
h(0)hH(0)

�
This equa-

tion can be seen as the (maximized w.r.t. A) GMAPML log

likelihood of T (P )Y � N ((~IP

h
Ao1
0

i
)
 h(0);R). T (P )Y

represents a reduction of data w.r.t. Y which is however
asymtotically negligeable.
We can then de�ne 2 approaches to ML based on P and

h(0): the GMAPML approach described in (21) and the
GML approach which minimizes:

ln(detR) +

T (P )Y � (~IP

h
Ao1
0

i
)
 h(0)

2
R�1

(22)

Like for the channel based approaches, the GML method
appears better than the GMAPML.
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Figure 3. CRBs for P and h(0)

4.1. CRBs.

We study here the GML CRB for
�
p(1 : L) h(0) �2v

�
,

which is asymptotically reached. The SNR is of 10dB,
M=50. The channel is:h

1:0000 0:8000
�1:5000 1:4000

i
In �g.4.1., again, a signi�cant improvement has to be no-

ticed as more and more symbols are known. The quality of
estimation of h(0) has a certain inuence on that of P when
very few symbols are known. The quality of estimation of
h(0) is however dependent on that of P even with a large
number of known symbols.

4.2. Methods

4.2.1. Iterative Quadratic ML (IQML)

This method is based on GMAPML. At iteration (i), we
get to solve:

min
p(i)(1:L);h(i)

(0)

T (P (i))Y �(~IP
h
Ao1
0

i
)
 h(i)(0)


(R(i�1))�1

(23)

R(i�1) = �2vT (P
(i�1))T H(P (i�1))

+
�
~IRAA ~I

H
�


�
h(i�1)(0)h(i�1)H(0)

� (24)

IQML is not guaranteed to converge. However, if it is ini-
tialized by a consistent estimate for P and h(0), it converges
su�ciently at the �rst iteration.
We simulated this algorithm for M=100, SNR=7dB and

10 dB, and the following channel:h
1:0000 0:8000 0:5000 0:6000 0:1000
�1:5000 1:4000 �0:9000 1:1000 �0:0300

i
The number of known symbols is successively: 20, 10, 5 and
0. Two initializations were used: initialization by training
sequence when 20 symbols are known and initialization by
a blind algorithm based on linear prediction [6] tested for
all cases. For 10 and 5 known symbols, we either kept the
h(0) of the initialization or reevaluated it at each iteration.
When no symbols are known, we kept the h(0) of the ini-
tialization. We get back the channel from P and h(0) by
solving equation (18) in the least squares sense.
We notice that even with 5 known symbols, the estima-

tion of h(0) gets improved by the algorithm. It appears to
be preferable to do only one iteration of the IQML. Fur-
thermore, the performance is good when 20 symbols are
known.

4.2.2. PQML
The estimate of h(0) can be re�ned by a PQML method

applied to the GML cost function.
After the submission of this paper, we became aware of

[10] in which a semiblind GML method and corresponding
Cramer-Rao Bound have also been pursued. The model-
ing of the training-sequence information in [10] is incorrect
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Figure 4. Normalized estimation errors for h (aver-
aged over 100 noise realizations)

though (instead of the training sequence, the information
considered in [10] is the training sequence times an unknown
zero-mean unit-variance normal variable).
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