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ABSTRACT

We establish existence of asymptotic stationary points
for a class of adaptive IIR filtering algorithms, including
(S)HARF, the Feintuch algorithm, and Landau’s algorithm,
for reduced-order cases. We show first that the nonlinear
equations characterizing a stationary point admit a solution
giving rise to a stable transfer function, when the input is
white noise. We then show that an analytic procedure to
construct the solution may be reduced to the Nevanlinna-
Pick interpolation problem. The white noise assumption on
the input simplifies the mathematics of an already difficult
problem, although the existence proof appears extendable to
correlated inputs as well.

1. INTRODUCTION

Most convergence results for adaptive IIR filters assume a
sufficient order setting: the degree of the identifier is at least
as large as that of the unknown system. Comparatively few
convergence results are available for more realistic reduced-
order settings; the equations characterizing stationary points
are often nonlinear in the filter coefficients. A first step
in studying convergence is to isolate the set of stationary
points—if any exist—and we establish here existence of a
stable transfer function satisfying such equations for a class
of algorithms derived from hyperstability theory.

The existence proof assumes only that the unknown sys-
tem is causal and L2 stable. When in addition the unknown
transfer function is rational, we outline a procedure for ana-
lyticallyconstructing the set of transfer functions obtained at
the stationary points. This proves quite useful for algorithm
testing and validation, as well as for further analytic study
of convergence properties.

2. ALGORITHM

Consider a system identification setup where {u(⋅)} is the
input sequence and the output sequence {y(⋅)} is generated

as

y(n) =
1X

k = 0

hk u(n−k) + ζ (n).

Here {ζ (⋅)} is a stationary second-order process assumed
independent of the input {u(⋅)}. Let

bH(z) =
B(z)
A(z)

=
b0 + b1 z + ⋅ ⋅ ⋅ + bM zM

1 + a1 z + ⋅ ⋅ ⋅+ aM zM
(1)

be a candidate Mth-order rational function, where z denotes
the backward delay operator: zu(n) = u(n−1). The coef-
ficients {ak} and {bk} may be adjusted using the SHARF
algorithm [1]:

ŷ(n) = −
MX

k = 1

ak(n) ŷ(n−k) +
MX

k = 0

bk(n)u(n−k)

ε(n) = [y(n) − ŷ(n)] +
MX

k = 1

ck [y(n−k) − ŷ(n−k)]

ak(n+1) = ak(n) − µ ε(n) ŷ(n−k), k = 1,2, . . . ,M;
bk(n+1) = bk(n) + µ ε(n)u(n−k), k = 0,1, . . . ,M.

Here {ck} are user-chosen constants. The Feintuch algo-
rithm [2] results upon setting ck = 0 for all k; the HARF
algorithm [3] is a more sophisticated version using a poste-
riori quantities in the update equations; Landau’s algorithm
[4] replaces the stepsize µ with a matrix gain sequence, of
which a QR variant may be found in [5].

In the special case where the unknown transfer function

H(z) =
1X

k = 0

hk zk, jzj < 1, (2)

is a rational function of degree M (our chosen filter or-
der), we have H(z) = B(z)/A(z) for polynomials A(z) and
B(z). The (S)HARF algorithms are (weakly) convergent for
slow adaptation provided we choose the compensation co-
efficients in C(z) = 1 + c1 z + ⋅ ⋅ ⋅ + cM zM to give C(z)/A(z) as



a strictly positive real transfer function [6]; for the Feintuch
algorithm the same applies to 1/A(z), whereas Landau’s al-
gorithm is strongly convergent provided [C(z)/A(z)] − 1

2 is
strictly positive real [7].

We consider here the more realistic reduced-order case,
which assumes that, no matter what finite order M we choose
for our “identifer” in (1), the degree of H(z) in (2) is greater
than M. Identification in the literal sense is then unattainable,
and one is led to inquire whether the SHARF algorithm (or
its variants) might converge to a useful approximation to
H(z). Anderson and Johnson [8] show the nice result that
this algorithm class does not diverge, but this alone need not
imply convergence to some useful approximation.

In order to study convergence, it is useful to first isolate
the set of asymptotic stationary points of the algorithm; these
correspond to those values of the filter coefficients {ak} and
{bk} which, if held fixed, would yield vanishing mean update
terms for the coefficients. For all the algorithms considered,
this reads as (E = expectation)

E[ε(n) ŷ(n−k)] = 0, k = 1,2, . . . ,M;
E[ε(n)u(n−k)] = 0, k = 0,1, . . . ,M. (3)

Although this system is nonlinear in the filter coefficients
{ak}, solutions may be expressed in the transfer function
space. To this end, let

V(z) =
aM + aM−1 z + ⋅ ⋅ ⋅+ a1 zM−1 + zM

1 + a1 z + ⋅ ⋅ ⋅+ aM−1 zM−1 + aM zM (4)

be an Mth-order all-pass function having the same poles asbH(z). If the input sequence {u(⋅)} is white noise, then from
[9, p. 534] bH(z) will be a stable transfer function from {ak}
and {bk}, obtained at a solution to (3), if and only if

H(z) − bH(z) = zM+1 V(z)R(z) (5)

for some stable and causal function R(z). The factor zM+1

means that the impulse responses of H(z) and bH(z) coincide
in the first M+1 terms, while the factorV(z) implies that H(z)
and bH(z) take the same values at the reciprocals of the poles
of bH(z) [as these points are zeros of V(z)].

If V(z) is expanded in terms of its impulse response as

V(z) =
1X

k = 0

vk zk,

then one may show [9] that (5) may be rearranged as2
664

h1 h2 h3 ⋅ ⋅ ⋅
h2 h3 h4 ⋅ ⋅ ⋅
...

...
... . .

.

hM hM+1 hM+2 ⋅ ⋅ ⋅

3
775
2
664

v0

v1

v2
...

3
775 =

2
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0
0
...
0

3
775 (6)

or, in inner product form,

hH(z),zkV(z)i = 0, k = 1,2, . . . ,M.

If we can find an Mth-order all-pass function fulfilling these
constraints, then we shall have the poles of bH(z) = B(z)/A(z).
The numerator B(z) can then be found by solving

B(1/zi)
A(1/zi)

= H(1/zi)

where {zi} are the poles of bH(z); this yields a linear system
in the coefficients {bk}, which is always solvable. The re-
sulting bH(z) then fulfills (5), and accordingly we concentrate
on finding an Mth-order all-pass function V(z) fulfilling the
orthogonality constraints (6). The next section establishes
existence of such an all-pass function whenever H(z) has a
square-summable impulse response. Section 4 then shows
how to construct such a V(z) in the special case where H(z)
is rational.

3. EXISTENCE IN THE GENERAL CASE

Rather than parametrize V(z) in direct form, as in (4), we
find it more convenient to use its reflection coefficients. Let
WM(z) = V(z) [where M = degV(z)], and determine lower
order all-pass functions Wk(z) from the Schur recursion

Wk−1(z) = z−1 Wk(z) − sk

1 − skWk(z)
, sk = Wk(0), (7)

for k = M, . . . , 1. The all-pass function WM(z) = V(z) is
stable with degree M if and only if −1 < sk < 1 for k = M, . . . ,
1. We shall write V(z,sM, . . . ,s1) when necessary to indicate
the dependence of V(z) on {sk}.

The following properties are obtained readily from (7):

1. If sk = ±1, but jsij < 1 for i > k, thenV(z) degenerates to
a stable all-pass function of degreeM−k, parametrized
by sk+1, . . . , sM.

2. If we negate sk at its boundary, then for all z

V(z,sM , . . . ,sk+1 ,sk)
���
sk = +1

= −V(z,−sM, . . . ,−sk+1,sk)
���
sk = −1

Introduce now the vector-valued function

F(sM, . . . ,s1) =

2
4 hH(z),zV(z)i

...
hH(z),zMV(z)i

3
5 ,

which is continuous in the reflection coefficients {sk} which
parametrize V(z). We shall vary the reflection coefficients
over the closed hypercube

jskj ≤ 1, k = 1,2, . . . ,M,

and deduce that F must vanish somewhere in this domain.
For any choice of {sk}, F is bounded in Euclidean norm as

kFk2 ≤
1X

k = 1

h2
k. (8)



This follows because the functions {zkV(z)} are orthonor-
mal; the elements of F are the coefficients of projection of
H(z) on these functions, whose sum of squares can never
exceed the L2-norm squared of the function so projected.

From property 1 above, we have

lim
sM → +1

V(z) = +1, lim
sM → −1

V(z) = −1,

irrespective of the remaining reflection coefficients. As
such,

lim
sM → +1

F =

2
4 h1

...
hM

3
5 , lim

sM → −1
F = −

2
4 h1

...
hM

3
5 .

Denote the first point by BM; the second becomes −BM.
Choose now any set of values for sM−1, . . . , s1, and let sM

vary from +1 to −1. We generate a curve whose path depends
on the chosen values of sM−1, . . . , s1, but each curve begins
at the point BM and ends at −BM.

Consider the specific curve

BM−1
∆= {F : −1 ≤ sM ≤ 1,sM−1 = +1}.

By property 1 above, this curve does not depend on sM−2,
. . . , s1. And by property 2, defining a similar curve with
sM−1 = −1 must generate −BM−1:

−BM−1 = {F : −1 ≤ sM ≤ 1,sM−1 = −1}.

Now set sM−2 = +1, and let sM and sM−1 vary between +1 and
−1:

BM−2 = {F : −1 ≤ sM,sM−1 ≤ +1,sM−2 = +1}.

This surface must contain BM−1 and −BM−1 as edges (ob-
tained with sM−1 = ±1) and ±BM as endpoints (with sM = ±1).
Again from property 2 above, a similar surface with sM−2 =
−1 must generate −BM−2:

−BM−2 = {F : −1 ≤ sM,sM−1 ≤ +1,sM−2 = −1}.

Continuing this procedure for sM−3 down to s1, we generate
sucessively higher dimensional surfaces±BM−3 down to ±B1;
the surfaces ±Bk will always have Bk+1 and −Bk+1 as edges,
and ultimately ±BM as endpoints.

Now, the M-dimensional surfaces B1 and −B1 will lie
on exactly opposite sides of the origin, and since they share
common M−1-dimensional edges B2 and −B2, their union
B1 ∪ −B1 must completely surround the origin.

Now vary s1 from +1 to −1 and, for each value of s1, let

B0(s1) = {F : −1 ≤ sk ≤ +1, k = 2, . . . ,M}

denote the surface obtained as the remaining reflection co-
efficients exhaust their hypercube. This gives B0(+1) = B1

andB0(−1) = −B1. The surfaces ±B2 are still edges ofB0(s1)

for all s1, and varying s1 from +1 to −1 causes B0(s1) to
continuously deform from B1 to −B1; an intermediate value
of s1 must yield an intermediate surface passing through the
origin. This shows that the range space of F includes the
origin, the desired goal.

We remark that F may vanish for some boundary point
jskj = 1; in this case, we will have found an all-pass function
V(z) of degree less than M fulfilling the orthogonality con-
straints (6). In this case, the transfer function bH(z) recon-
struced from V(z) will have pole-zero cancellations, since
deg bH(z) = degV(z) may be shown.

4. ANALYTIC CONSTRUCTION

With existence established whenever H(z) is L2 stable, we
pursue construction of V(z) in the special case where H(z) is
a rational function, of degree p, say. To this end, let (A,b,c)
be a minimal realization of the strictly causal part of H(z):

1X
k = 1

hk zk = zc(I − zA)−1b ⇒ hk = cAk−1b.

The orthogonality constraint (6) then reads as2
664

0
0
...
0

3
775 =

2
664

c
cA
...

cAM−1

3
775

| {z }
OM×p

[b Ab A2b ⋅ ⋅ ⋅ ]

2
664

v0

v1

v2
...

3
775 . (9)

in which the M × p observability matrix OM×p is distin-
guished. To simplify the procedure, suppose the eigenvalues
of A are distinct, so that A is diagonalizable.1 By a similari-
ty transformation if necessary, we may consider a particular
realization for which

A =

2
664

λ1

λ2
. . .

λp

3
775 , b =

2
664

1
1
...
1

3
775 , (10)

and c contains the pole residues. This then gives in (9)

M terms

8>><
>>:

2
664

0
0
...
0

3
775 =

2
664

c
cA
...

cAM−1

3
775

| {z }
OM×p

2
664

V(λ1)
V(λ2)

...
V(λp)

3
775 .

Seen from this angle, we now seek an Mth-order all-pass
function which “interpolates” the nullspace of the observ-
ability matrix.

1When A has repeated eigenvalues, one may replace (10) with a con-
trollable Jordan form, and the rest carries through with straightforward
modifications.



To facilitate the procedure to follow, consider first the
special case in which p = M+1. The matrix OM×(M+1) then
has a nullspace of dimension one and, since O has a Van-
dermonde structure, a particular vector x = [x1, . . . ,xp]t in its
nullspace may be written as

xi = 1

, 
ci

pY
k = 1
k ≠ i

(λi − λk)

!
. (11)

All null vectors may thus be written as α x, where α is a free
scale factor.

Consider now the problem of finding a Schur function
S(z) (i.e., analytic in jzj < 1 and bounded by unit modulus)
which fulfills the interpolation conditions

S(λi) = α xi, i = 1,2, . . . , p.

This is the classic Nevanlinna-Pick interpolation problem,
and a solution exists if and only if a certain p× p Pick matrix
P, with (i, j)-element

Pi j =
1 − jαj2xi x∗

j

1 − λi λ∗
j

, i, j = 1,2, . . . , p,

is positive (semi-) definite [10]. (Here “∗” denotes Her-
mitian transposition). The solution set degenerates to an
all-pass function V(z) of degree M (or less) if and only if
P becomes positive semi-definite and singular [10]; in that
case, degV(z) = rankP. Now, one can readily check that P
can be decomposed as P = Q − jαj2R, where

Qi j =
1

1 − λi λ∗
j

, Ri j =
xi x∗

j

1 − λi λ∗
j

.

The matrix R is positive definite since all the xi are nonzero
[cf. (11)]. There thus exists an invertible matrix T for which
TRT∗ = Ip; a congruence transformation applied to P then
gives

TPT∗ = TQT∗ − jαj2I,

from which it is clear that choosing jαj2 = λmin[TQT∗] ren-
ders P positive semi-definite. We now have the interpolation
points {λi} and the interpolation values {α xi} for an Mth (or
lower) order all-pass function V(z). The algorithm of [10]
(among others) can then be used to construct V(z).

When p > M+1, the dimension of the nullspace of OM×p

increases to p − M. Let x1, . . . xp−M be any basis for this
nullspace. We then seek an all-pass function V(z) of degree
M (or less) for which

2
4V(λ1)

...
V(λp)

3
5 = y = α1 x1 + α2 x2 + ⋅ ⋅ ⋅ + αp−M xp−M,

for some choice of the constants {αk}; these must be chosen
in such a way that the Pick matrix

Pi j =
1 − yi y∗

j

1 − λi λ∗
j

becomes positive semi-definite of rank M or less. Such
a choice of {αk} exists since the previous section showed
that V(z) exists. Uniqueness of the {αk}, however, is not
in general ensured, which complicates a direct procedure
for determining these constants. Once found, though, we
again have the interpolationpoints {λi} and the interpolation
values {yi} of an Mth (or lower) order all-pass functionV(z),
from which a solution may readily be constructed.
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