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ABSTRACT

This paper studies the constant modulus (CM) criterion
speci�cally for the case where the time span of the fraction-
ally-spaced equalizer (FSE) is less than that of the channel.
Hence, there necessarily exists an error in the equalized sig-
nal. Results for the binary case (Part I) are extended to
multi-level signalling. This analysis is connected with the
previous work of Fijalkow et al. on misadjustment of a
CM receiver to suggest a �nite interval of acceptable FSE
length which shows that a longer FSE may not be better
than a shorter FSE{in some cases, matching the FSE length
to that of the channel may not reduce the MSE to a pre-
scribed threshold, while a shorter FSE may be successful in
achieving this threshold.

1. INTRODUCTION

The Constant Modulus (CM) criterion was �rst proposed
by Godard in [3] and developed independently by Treich-
ler and Agee in [11]. The stochastic gradient descent im-
plementation, or Constant Modulus Algorithm (CMA), is
widely used in practice (see [10]) and shown in [8] to be glob-
ally convergent under certain assumptions. One of these
assumptions is that the length of the fractionally-spaced
CMA equalizer (CMA-FSE) is at least as long as that of
the channel. Little work in addressing the undermodeled
case exists ([12], [1] and this paper are exceptions).
In Part I of this work, [1], we studied the CM criterion

with noiseless, binary signalling, speci�cally for the case
where the fractionally-spaced equalizer (FSE) does not sat-
isfy the length condition. We concluded that though a FSE
length equal to the channel length may be needed for per-
fect equalization, far fewer CMA-FSE coe�cients may be
required to achieve a Transfer Level MSE corresponding to
an error rate when CMA-FSE is typically transferred to de-
cision directed (DD) LMS. This paper extends the analysis
in [1] to real, multi-level (PAM) signalling. The change in
CM cost from a perfect equalization setting is derived when
the length condition is violated{either from perturbations
to the channel outside the time span of the FSE, or from
FSE truncation. This analysis is connected with the work
in [2] on CMA-FSE misadjustment to suggest a �nite in-
terval of FSE length where the CMA-FSE is successful in
achieving the Transfer Level MSE. As with classical LMS
[5] if the CMA-FSE length is too short, then there remains

1Supportedby Hughes Space and Comm. Doctoral Fellowship
2Supported in part by NSF Grant MIP-9509011 and Applied

Signal Technology endres(johnson)@ee.cornell.edu
3Funding is acknowledged of the activities of the Cooperative

Research Centre for Ro-
bust and Adaptive Systems by the Australian Commonwealth
Government under the Cooperative Research Centres Program
brian.anderson(michael.green)@anu.edu.au

too much intersymbol interference (ISI), while if the CMA-
FSE length is too long, then excess MSE can dominate ISI
reduction. An example in x3.3 shows that the \proper" FSE
length is less than the actual channel length in some cases.
The analyses approaches are also combined with the CM
power constraint �rst proposed for the binary, baud-spaced
case in [6] to derive upper and lower bounds on the MSE of
the CM receiver.
The paper is organized as follows: x2 describes the pro-

posed analyses approaches in addressing the undermodeling
problem. x3 extends these results to the PAM CM criterion,
relates the results to MSE, and presents examples. x4 de-
rives a bound on the MSE of the CM receiver based on the
CM power constraint, and x5 contains concluding remarks.

2. ANALYSES APPROACHES

2.1. Channel Perturbation

The �rst approach taken in addressing the robustness of a
CM receiver to undermodeling is to consider those chan-
nel coe�cients that are outside the time span of the FSE
as channel perturbations, in order to study the CM cost
incurred. This CM criterion is speci�cally the one mini-
mized by CMA-FSE in a stochastic gradient descent imple-
mentation, though MSE or even BER may be the ultimate
performance measure. Let

c = [c0 c1 : : : cLc�1]
T (1)

be the length-Lc channel impulse response vector, which is
zero outside this �nite time support. De�ne two length-Lc
vectors; vector cm contains Lm (Lm < Lc) consecutive taps
of c in the same positions as they occurred in c with zeros
in the remaining Lc�Lm positions, and vector cp contains
the Lc �Lm taps of c that are not in cm in the same posi-
tions as they occurred in c, with zeros in the remaining Lm
positions. Hence, c = cm + cp; with a length-Lm FSE, the
\full length" channel is composed of a \modeled" portion
which may be perfectly equalizable (baud-spaced, combined
channel-FSE is a pure delay), and a \perturbation" portion
which is potentially non-zero outside the time support of
the FSE. For example, one such partitioning of the channel
taps is

cm := [c0 c1 : : : cLm�1 0 0 : : : 0| {z }
Lc�Lm zeros

]T

cp := [0 0 : : : 0| {z }
Lm zeros

cLm cLm+1 : : : cLc�1]
T (2)

which considers the perturbation as appended channel taps
with largest delay from the current symbol.
Further, let Cm, Cp and C be the convolution matrices

associated with cm, cp and c, respectively, and let fm be
the equalizer coe�cient vector corresponding to a global



minimum of the CM cost associated with channel cm. The
combined channel-equalizer response before decimation is

h = Cfm (3)

= Cmfm +Cpfm (4)

and the decimated (baud-spaced) version can be written as

h# = Cm#fm +Cp#fm (5)

= hm + hp (6)

where Cm# and Cp# are appropriately row-decimated ver-
sions of Cm and Cp, respectively. Observe that since fm
is a global minimum of the CM criterion with respect to
channel cm, there is no error in the equalized signal due
to the �rst term in (6) provided the source kurtosis is less
than 3 (see [7]). The second term is the e�ect of channel
perturbations outside the time span of the FSE.

2.2. Truncated Equalizer

A related approach to that above is to consider the e�ect on
the CM cost due to equalizer taps lost in truncation from
the FSE which achieves perfect equalization. Let

f� = [f�0 f�1 : : : f
�
Lc�1]

T (7)

be a CM global minimum for channel c. De�ne two length-
Lc vectors ft and ~f such that ft = f�+~f. Vector ft contains
Lm consecutive taps of f� in the same positions as they
occurred in f� with zeros in the remaining Lc�Lm positions,
and vector �~f contains the Lc � Lm taps of f� that are
not in ft in the same positions as they occurred in f�, with
zeros in the remaining Lm positions. For example, one such
partitioning is

ft := [f�0 f
�
1 : : : f

�
Lm�1 0 0 : : : 0| {z }

Lc�Lm zeros

]T

~f := [0 0 : : : 0| {z }
Lm zeros

� f
�
Lm � f

�
Lm+1 : : :� f

�
Lc�1]

T (8)

The baud-spaced, combined channel-equalizer response
for the truncated equalizer ft can be written as

h# = C#ft (9)

= C#f
� +C#

~f (10)

where C# is the appropriately row-decimated version of C.
Observe that (10) is the same form as (6), where the �rst
term is analogous to the \modeled" contribution, and sec-
ond term is analogous to the \perturbation" contribution.
Thus, the �rst term satis�es the length condition and will
achieve perfect equalization since f� is a global minimum of
the CM criterion, provided the source kurtosis is less than
3 (see [7]). Our goal in addressing CMA's robustness prop-
erties is to study the e�ect of the second terms of (6) and
(10) on the real, multi-level CM cost function.

3. CM CRITERION

3.1. Change in Cost

It is shown in [1] that using the two analysis approaches
above, the CM cost incurred for the binary-signalling case
upon violation of the length condition is
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�
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where each element of the combined channel-equalizer vec-
tor is comprised of two terms, hi = mi + pi, such that
mi 2 Cm#fm or mi 2 C#f

� and pi 2 Cp#fm or pi 2 C#
~f.

Note also that since the \modelled" portion achieves per-
fect equalization, m� = 1 and mi = 0 8i 6= �. (The case
where m� = �1 can be shown to be equivalent). We next
extend this result to the PAM signalling case.
The CM cost for a Non-Constant-Modulus (NCM), white,

symmetric source can be expressed as
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where �2s = Efs2g, � = Efs4g and  = �=�2s is the CM dis-
persion constant. Hence, the CM cost at a global minimum
which achieves perfect equalization is

JCM jglobal min: = 
2
� � (13)

When the length condition is violated, as from channel per-
turbations outside the FSE time span or from FSE taps lost
in truncation, it can be shown in a similar fashion as was
done in deriving (11) (see [1]) that the CM cost changes
from a perfect equalization setting to
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�

2
� �
�

(14)

+

"
4�p2� + (6(�2s)

2
� 2�)

PX
i6=�;i=0

p
2
i

#

+ p�

"
4�p2� + 12(�2s)

2

PX
i6=�;i=0

p
2
i

#

+

"
�

PX
i=0

p
4
i + 3(�2s)

2

PX
i=0

PX
j=0;j 6=i

p
2
i p

2
j

#

The change in CM cost due to undermodeling is therefore

�JCM = JCM jlength � JCM jglobal min: (15)
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Note that (16) is grouped according to powers of the pi. For
the quadratic contribution, the NCM source weights the p2�
element more heavily than the other p2i elements, since � �
(�2s)

2. Note that the quadratic terms were equally weighted
for the binary case in (11). For example, with a 4-PAM unit-
variance constellation, 4� = 6:56 while (6(�2)2�2�) = 2:72.
These factors should be related to the MSE cost incurred
using the same analysis methods.



3.2. Relation to MSE

The MSE criterion is

JMSE = Ef(y � s�)
2
g (17)

= �
2
s

 
PX
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h
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i + 1� 2h�

!
(18)

where y is the FSE output, s� is a source symbol, and �2s
is the source power. The change in MSE from a perfect
equalization setting due to undermodeling is then

�JMSE =

PX
i=0

(mi + pi)
2 + 1� 2(m� + p�) (19)

= jjhpjj
2
2; (�

2
s = 1) (20)

Hence, when the perturbation terms are \small", the change
in CM cost in the vicinity of a global minimum is approxi-
mately a scaled version of the change in MSE cost

�JCM � (6� 2�)�JMSE (21)

with source power normalized to unity. This result gener-
alizes that for the binary case in [1], �Jcm � 4(�JMSE).

3.3. Examples

Undermodeling:
Based on the binary analysis in [1], it is proposed that
the FSE length be chosen to span the \signi�cant" chan-
nel taps{those whose magnitudes are approximately 20% or
greater of the largest tap. We wish to compare this rule with
that which may be suggested by the preceding PAM analy-
sis. Hence, we evaluate (16) with a 16-PAM source for the
two approaches of channel perturbations and equalizer trun-
cation as described in x2. The T=2-spaced channel mod-
els are derived from empirical measurements of digital mi-
crowave radio signals in the San Francisco Bay Area which
are described in [4] and now available over the www from
the database at http://spib.rice.edu/spib/microwave.html.
The channel taps for the approach of x2.1 are partitioned
according to (2) and the partitioning of FSE coe�cients
for the approach of x2.2 is according to (8). The re-
sults are scaled (by a factor of 1

(6�2�)
) to approximate the

MSE cost. The results for Channel 2 of the database are
shown below; the results for other channels of the database
have similar behavior and can be found over the www at
www.ee.cornell.edu/�johnson/BERG.
Figure 1 contains two plots. The top plot contains the

magnitude of the T=2 channel impulse response coe�cients.
The bottom plot contains the graphs of three functions: i)
(solid) the approximation of MSE from a scaled version of
(16) due to channel perturbations outside the FSE time
span (x2.1), ii) (dashed) the approximation of MSE from
a scaled version of (16) due to FSE truncation (x2.2), and
iii) (dotted) the true MSE described by (20) according to
the approach in x2.1{note that, unlike the BPSK case, this
quantity is not necessarily a scaled version of the quadratic
contribution of (16). The graphs may be referenced to the
dashed line of constant MSE which corresponds to a Trans-
fer Level for which CMA is typically transferred to decision
directed (DD) LMS when further error-rate reduction or
tracking is required.
These �gures con�rm the conclusions drawn from the bi-

nary analysis and examples in [1]. Far fewer CMA-FSE
taps are needed to reach the Transfer Level than for per-
fect equalization. The \signi�cant" portion of the channel
appears to be those coe�cients greater than approximately
20% of the magnitude of the largest channel tap. Little im-
provement in the MSE is observed by increasing the FSE

length to span channel coe�cients less than this thresh-
old. Also, in this region, the true MSE as described in iii)
above is essentially the same as the approximated MSE as
described in i) above, i.e., the CM cost remains essentially
a scaled version of the MSE cost. Moreover, the change in
costs remains small, suggesting that the CMminimum stays
in a tight neighborhood of the MSE minimum. These �g-
ures also show that the two di�erent but related approaches
described in x2 are not order-able (one is not always greater
than the other), suggesting the validity of both.

Misadjustment:
The perfect equalization result requiring the length condi-
tion and also our analysis thus far both study the CM error
surface. The adaptive implementation to descend this er-
ror surface (CMA-FSE), however, typically uses a gradient
descent approach with non-vanishing, but small, stepsize �.
A NCM source causes a misadjustment term in the equal-
izer update equation, since the instantaneous CMA error
is generally nonzero, e�ectively causing a \rattling around"
in both the CM and MSE minima. This behavior usually
forces the transfer from CMA-FSE to DD-LMS for further
MSE reduction. Note that LMS su�ers misadjustment due
to noise, but not due to a NCM source. The misadjustment
in MSE terms of a CM receiver updated with CMA-FSE is
approximated when the length condition is satis�ed and in
the absence of noise in [2]:

JMSEjmis � �Lm

Efs6g

(�2
s
)3
� �

(3� �)
�
2
s�

2
r (22)

where � = �=(�2s)
2 is the source kurtosis and �2r is the re-

ceived signal power. The result mimics that for LMS in its
dependence on the FSE length (see [5]), which suggests a
classical compromise: the FSE length must be chosen long
enough to cover the \signi�cant" portion of the channel
so that the undermodeling does not dominate the MSE of
the CM receiver, but not too long so that the misadjust-
ment dominates the MSE of the CM receiver. We approxi-
mate the MSE due to both violation of the length condition
and misadjustment in the receiver implementing CMA-FSE
from (16) and (22) as

JMSE �
1

6� 2�
�JCM + JMSEjmis (23)

Figure 2 shows this approximation for Channel A with a
4-PAM source and � = 1:5 � 10�3. This result suggests a
FSE length less than that needed for perfect equalization!
In fact, this example shows that choosing the FSE length
equal to the length of the channel is precisely the wrong
thing to do in attempting to reach the MSE Transfer Level.

4. POWER CONSTRAINT

The analyses approaches of x2 can be applied to the CM
receiver power constraint �rst proposed for the baud-spaced
binary case in [6] and generalized in [9]. A bound on the
`2 norm of the portion of the combined channel-equalizer
arising from violation of the length condition follows easily
from this power constraint.
De�ne Qm := Cm#

TCm#. The CM receiver satis�es

k � fm
TQmfm � 1 (24)

where k depends on the source kurtosis (see [9]). An al-
ternative expression for (24) can be written in terms of the
minimum and maximum eigenvalues of Qm.

�min(Qm)fm
T
fm � fm

T
Qmfm � �max(Qm)fm

T
fm (25)



Together, (24) and (25) bound the `2 norm of the CM equal-
izer coe�cients.

k

�max(Qm)
� fm

T
fm �

1

�min(Qm)
(26)

De�ne Qp = Cp#
TCp# so that a similar expression can be

written for the portion of the combined channel-equalizer
resulting from violation of the length condition.

�min(Qp)fm
T
fm � fm

T
Qpfm � �max(Qp)fm

T
fm (27)

Substituting the bounds of the equalizer norm from (26)
into (27) implies that

k
�min(Qp)

�max(Qm)
� jjCp#fmjj

2
2 �

�max(Qp)

�min(Qm)
(28)

These bounds o�er some insight into the manifestation of
error due to common subchannel roots. As the \modeled"
channel loses disparity, �min(Qm) approaches zero and the
upper bound approaches in�nity. As the FSE length is in-
creased to match the channel length, �min(Qp) goes to zero,
which forces the lower bound to zero.
Similarly, when FSE taps are truncated as in x2.2,

jjC#
~f jj

2
2 �

�max(Q)

�min(Q)
(29)

where Q := C#
TC#. Note that the bound is precisely the

condition number of the autocorrelation matrix of the baud-
spaced received signal.
Though the bounds in (28) and (29) o�er insight into

error due to loss of channel disparity, and therefore may (or
may not) merit further study, the bounds do not become
tight when applied to the microwave channels from [4].

5. CONCLUSION

This paper has studied the robustness of the CM criterion
for PAM signalling when the length condition is violated, a
nearly unavoidable condition in practice for high data rate
communications. Presumably, the results for the complex
(QAM) case are a straightforward extension of the above
analysis. It is shown that the e�ect on the CM cost and the
MSE cost is small when perturbations outside the time span
of the FSE are small, so that the CM cost is approximately
a scaled version of the MSE cost. Hence, the CM minimum
stays in a tight neighborhood around the MSE minimum.
This analysis is connected with the previous work in [2]
on CMA-FSE misadjustment which illuminates conicting
contributors to FSE length selection; the FSE length should
be chosen long enough to span the signi�cant channel coef-
�cients, but not so long that the misadjustment dominates
the MSE. An example shows that this �nite interval of FSE
length need not include that needed for perfect equalization.
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