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ABSTRACT

In a multi-user system where training is not available, blind
channel identi�cation and equalization become essential. In
this paper, we present a new method that utilizes second
order statistics for channel parameter estimation and opti-
mum �ltering. The identi�cation algorithm is simple and
relies on an outer-product decomposition and partial infor-
mation of the desired signal channel. It allows the identi-
�cation of individual user channels for which partial infor-
mation is known under a speci�c condition. An optimum
receiver structure can then be established for the desired
signal channel.

1. INTRODUCTION

In many data communication systems such as the digital
wireless systems, data signals are often transmitted through
unknown channels which may introduce severe linear dis-
tortion. In order to improve the system performance, it
is important for the receiver to identify and remove chan-
nel distortions through equalization or sequence estimation.
Because input training signal may be too short or even non-
existent for channel identi�cation, blind channel identi�ca-
tion can play useful roles in these systems. The blind identi-
�cation of single user system can rely on second order cyclic
statistics as shown in [1].
In multi-user and multi-channel systems, the blind iden-

ti�cation of multiple channel responses often produce a set
of ambiguous results. It has been previously established [2]
that blind channel identi�cation can only identify chan-
nel responses subject to an instantaneous mixing matrix.
Hence, signal separation becomes necessary [3]. Tradition-
ally, signal separation is based on additional information
of the source signals. When several users transmit similar
signals, source separation becomes a challenging problem.
In this paper, a knowledge based method is presented

to resolve this ambiguity. Given the identi�ed ambiguous
channel response matrix, a priori information on desired
users can be used to further identify the unknown chan-
nels uniquely. Their Wiener �lters can subsequently be
estimated for signal recovery and separation. This prior
knowledge may take the form of CDMA spreading codes or
pulse-shaping �lters of the desired signal channel.

2. PROBLEM FORMULATION

A multi-user QAM data communication system can be de-
scribed using a baseband representation. Assume that the
N user channels are all linear and causal with impulse re-
sponse fhu(t); u = 1; 2; : : :N g, the received output signal
can be written as

x(t) =

NX
u=1

1X
k=�1

sk;uhu(t�kT )+w(t); sk;u 2 Au; (2::1)

where T is the symbol baud period and Au is the input
signal set of user u. The channel input sequences fsk;ug
are typically independent for di�erent users and are also
i.i.d. The noise w(t) is stationary, white, and independent of
channel input sequences sk;u, but not necessarily Gaussian.
Note that hu(t) is a \composite" channel impulse re-

sponse that includes transmitter and receiver �lters as well
as the physical channel response. In a typical multi-user
system, multiple channels of observations will be available
from multiple sensors. If J sub-channels (sensors or anten-
nas) exist, then x(t), hu(t), and w(t) are all J � 1 vectors.
It has been shown [1] that more channel diversity may

result from oversampling the channel outputs. Let the sam-
pling interval be � = T=p where p is an integer. The over-
sampled discrete signals and responses are

xi
�

= x(i�); hu[i]
�

= hu(i�) and wi
�

= w(i�): (2::2)

The channel output samples are hence

xn =

NX
u=1

1X
k=�1

sk;uhu[n� kp] + wn:

Suppose fhu(t)g has joint �nite support [0; Th), which
spans m0 + 1 integer baud periods. By de�ning notations

sk
�

= [sk;1 sk;2 : : : sk;N ];

s[k]
�

= [sk sk�1 : : : sk�m0�M+1]
0

w[k]
�

= [wkp wkp+1 : : : wkp�Mp+1]
0

hu[i]
�

=

2
64

hu[ip]
hu[ip+ 1]

...
hu[ip+ p� 1]

3
75 ;

Hi
�

= [h1[i] h2[i] : : : hN [i]];

we form an MpJ � (m0 +M)N block Toeplitz matrix

H =

2
6664
H0 H1 : : : Hm0

0 : : : 0

0 H0 H1 : : : Hm0

. . .
...

...
.. .

. . .
. . .

. . .
. . . 0

0 : : : 0 H0 H1 : : : Hm0

3
7775 :

(2::3)
Clearly, m0 is the order of the N dynamic FIR channels.
With these notations, a sampled channel output signal vec-



tor of length Mp can be written as

x[k]
�

=

2
6666666664

xkp
xkp+1
...

xkp+p�1
x(k�1)p
x(k�1)p+1

...
x(k�M+1)p+p�1

3
7777777775
=Hs[k] +w[k]: (2::4)

A rational fractional sampling generates an equivalent
multi-user system. If � = qT=p,H is simply anMpJ�(M+
m0)Nq block Toeplitz matrix with qN equivalent users [2].
It has been established [1] that the su�cient and neces-

sary identi�cation condition for H to be identi�able from
second order statistics is that H must be full rank. A nec-
essary dimensional condition requires that Jp � Nq:

3. CHANNEL IDENTIFICATION AND
SIGNAL SEPARATION

3.1. Knowledge-Based Channel Identi�cation

Assume that both the channel input signal and channel
noise are white with zero mean. Let their respective co-
variance matrix be Rs = Efs[k]s[k]Hg = �2sI and Rw =

Efw[k]w[k]Hg = �2wI: Based on (2..4), the channel output
covariance matrix becomes

Rm0
= Efx[k]x[k]Hg = �

2
sHH

H + �
2
wI (3::1)

We will form the channel parameter matrix

H
�

=

2
64
H0

H1

...
Hm0

3
75 : (3::2)

In [2] we derived a method to estimate the channel param-
eter matrix

HQ
H

where Q is an N�N unitary matrix. Recall from [3][4] that
this memoryless mixing matrix is intrinsic to the multi-user
blind identi�cation problem and cannot be resolved unless
additional information is available.
To identify a speci�c channel, note that in many commu-

nication systems, part of the composite signal channel, such
as the pulse-shaping �lter or the CDMA spreading signal,
are known to the receiver. We would like to identify the
unknown channel c(t) based on the known �lter response
f(t) for signal separation and channel identi�cation. The
development of this method is as follows. Let

c[i]
�

= c(i�); i = 0; 1; : : : ; m1p� 1 (3::3)

f [i]
�

= f(i�); i = 0; 1; : : : ; n2: (3::4)

The sampled channel impulse response becomes

h[i] =

iX
k=0

c[i� k]f [k]: (3::5)

Now de�ne

Ci
�

= [ c[ip] c[ip+ 1] : : : c[ip+ p� 1] ]
0

; (3::6)

F
�

=

2
666666666664

f0 0 : : : 0

f1 f0
. . . 0

...
. ..

. . .
...

fn2
. ..

. . . f0

0 fn2
. . .

...
...

. ..
. . .

...
0 0 : : : fn2

3
777777777775

(3::7)

and

c
�

=

2
64

C0

C1

...
Cm1�1

3
75 : (3::8)

The overall channel response vector for i-th user can be
written as

H = [ F1c1 F2c2 : : : FNcN ]: (3::9)

Given the ambiguous multi-channel matrix

B
�

= HQ
H (3::10)

we would like to identify each individual channel based on
a priori knowledge. Without loss of generality, assume that
a priori knowledge on f1(t) is available for the �rst channel.
We can write Q = [ q1 q2 : : : qN ]: It is therefore easy

to see that
F1c1 = Bq1 (3::11)

Now we need to show that the non-zero solution to the
equation

[F1 B ]
h bc1
�bq1

i
= 0; (3::12)

admits a unique channel estimate bc1 = c1.

3.2. Conditions for Unique Solution

From

F1bc1 =
NX
i=1

Ficiq
H
i bq1 (3::13)

we have,

F1(c1q
H
1 bq1 �bc1) +

NX
i=2

Hiq
H
i bq1 = 0: (3::14)

Denote �c1
�

= c1q
H
1 bq1 �bc1. We �nd

F1�c1 = �

NX
i=2

Hi(q
H
i bq1):

To understand this condition, we can de�ne the following
z�transforms

Fi(z) =

n2X
k=0

fi[k]z
�k; Ci(z) =

m1�1X
k=0

ci[k]z
�k;

�Ci(z) =

m1�1X
k=0

�ci[k]z
�k
:



Since F1 is Toeplitz, z�transform of equation (3..12) results
in

F1(z)�C1(z) +

NX
i=2

(q
H
i bq1)Hi(z) = 0: (3::15)

If fHi(z); i = 2; 3; : : : Ng are linearly independent of
F1(z)L(z) for all L(z), then we have

�C1(z) = 0 and q
H
i bq1Hi(z) = 0; i = 2; 3; : : : ; N:

(3::16)
Because of the assumption

Hi(z) 6= 0 for i = 2; 3; : : : ;N;

the identi�ed eigenvector bq1 is orthogonal to qi
q
H
i bq1 = 0: (3::17)

Therefore, so long as bq1 6= 0,

bq1 = jjbq1jjq1: (3::18)

Finally, the desired channel response is identi�ed from
(3..12) since

bc1 = (qH1 bq1)c1 = jjbq1jjc1: (3::19)

To summarize, the nonzero solution to (3..12) allows the
unique identi�cation of bc1 = jjbq1jjc1 if fHi(z); i =
2; 3; : : : Ng are linearly independent of F1(z)L(z) for all
L(z).
When the number of users N is unknown, (3..16) shows

that channel identi�cation can still be identi�ed. However,
the �rst eigenvector q1 can only be identi�ed if N is esti-
mated accurately.

4. ESTIMATED WIENER FILTER AND
OPTIMUM DELAY

Given the estimate of h1[i], optimum equalizer ( Wiener
�lter) can be derived for the �rst user to yield

bsk�d;1 = g
H
x[k]: (4::1)

The estimated Wiener �lter can be found as

g =
�
Efx[k]x[k]Hg

�
�1

Efx[k]s�k�d;1g

= �
2
sR

�1
m0

�hd; (4..2)

where we have de�ned

�hd
�

=

2
6664
h1[d]
h1[d� 1]
...
h1[0]
0

3
7775 :

It is apparent that the estimated Wiener �lter based on
estimated channel impulse response di�ers for di�erent sys-
tem delay d. Since the estimated Wiener �lter will result in
di�erent performances for di�erent delays, we need to opti-
mize the estimated Wiener �lter by minimizing the MSE

MSE(d)
�

= Efjsk�d;1 � bsk�d;1j2g: (4::3)

The MSE can be found to be

MSE(d) = �
2
s � �

4
s
�hHd R

�1
m0

�hd:

Hence, optimum delay can be found by �nding d that max-
imizes

�hHd R
�1
m0

�hd:

5. SIMULATION

Consider a two user system in which both transmitted sig-
nals are i.i.d. QPSK. We select p = 3 in all simulations.
The two ray multipath channel of user 1 and user 2 are
given by

h1(t) = p1(t)� 0:7p1(t� T=3);

h2(t) = p2(t)� 0:4p2(t� 2T=3):

The two sampled pulses p1(t) and p2(t) are shown in Fig. 5.,
whereas the overall channel responses are given in Fig. 5..
400 data samples are used to estimate the channel. The

two identi�ed channels from 50 trials are shown in Fig. 3.
Normalized channel estimation MSE averaged over 50 tri-
als are given in Fig. 4 under various input SNR. Fig. 5
also shows the average MSE for equalized user 1 output un-
der di�erent SNR levels. Finally, the channel output, the
Wiener �lter output and the estimated Wiener �lter output
of the QPSK signal of user 1 are shown in Fig. 7..
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Figure 1. Two pulses p1(t) and p2(t).
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Figure 2. Overall sampled channel h1(t) and channel
h2(t).
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Figure 3. Identi�ed channels under 0dB SNR.

6. CONCLUSION

In this paper, we consider the problem of multi-channel
identi�cation and signal separation. We show that speci�c
channel identi�cation and signal separation can be uniquely
determined if partial channel and signal information become
available. A robust algorithm is presented that will identify
the unknown part of the desired signal channel and generate
a minimum mean square error Wiener �lter. This algorithm
is very useful in many communication systems including the
IS-95 CDMA systems where a Walsh spreading function is
used for each user.
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Figure 4. Normalized channel estimation MSE for
20dB SNR.
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Figure 5. User 1 output MSE for SNR=20dB.
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(b) True Wiener output.
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Figure 6. Sampled channel output and Wiener �lter
outputs at SNR=20dB.


