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ABSTRACT

This paper is concerned with the blind equalisation

of a communication system. We propose to realize the

identi�cation of the channel impulse response as well

as the noise variance estimation and detection of the

emitted sequence of symbols. The signal modelisation

as a Hidden Markov Model (HMM) has the intrinsic

potential for solving such a problem. However, the high

performances of such methods are usually obtained at

the cost of a high computational complexity and local

minima problems. Both issues are addressed in this

paper.

1. INTRODUCTION

Several blind equalization methods have been recently

proposed in [3], [4],[1], relying on an Expectation-

Maximisation (EM) sequential algorithm, classically

used to approximate Maximum Likelihood estimates

for incomplete data. However, several issues are raised

by such a method. In particular, for high SNR lev-

els, the algorithm sometimes converges to local minima.

As a consequence, one has to cope with the initializa-

tion problem. Here, we propose a stochastic version

of the EM algorithm, known as the Monte-Carlo EM

algorithm [5]. The interest of a stochastic version for

avoiding local minima is discussed, showing that the

convergence rate is still very high. The second issue

of the optimal methods relying on both EM algorithm

and HMM formulation is the computational cost usu-

ally exponentionaly increasing with the length of the

memory. We use the simpli�ed (suboptimal) methods

proposed in [4], [3], but relying on a Gibbs sampler

method, classicaly used in image processing for image

restoration [6]: the previous EM algorithms using the

Gibbs sampler were iterative, and we show here that

we can deal as well with a sequential EM algorithm.

2. PROBLEM FORMULATION

let yt denote the observed signal which is the output of

a FIR �lter:

yt = HTXt + nt

where H = (H(0); H(1); :::; H(N � 1))T denotes the

unknown channel taps,andXt = (xt; xt�1; :::xt�N+1) is

the state vector of the hidden Markov process, this vec-

tor containing all symbols stored in the channel mem-

ory at time t. xt are taken from the set f�1; 1g. (How-
ever, generalisation to a di�erent alphabet is straight-

forward). This state vector follows the state equation,

relying on the shift property of the process Xt, A being

a shift matrix.

Xt = A �Xt�1 + xt � [1 0 � � � 0]
0 (1)

The additive noise process is assumed to be white, zero-

mean, Gaussian, with unknown variance �2.

The objective is here to recover the transmitted data

xt, from the observations, as well as providing at each

step an estimate of the channel impulse response and

the noise variance.

3. PREVIOUS WORKS AND THE

CONTRIBUTION OF THE PROPOSED

METHOD

Few methods ([4], [1]) propose to use the so-called EM

algorithm, which maximises the current expectation of

the likelihood, given the available observations and the

current parameters estimates. The E-step of this algo-

rithm involved taking expectation of the log-likelihood

over the stochastic process Xt:

Eflog(P (ytjXt; H))jYt; Ĥ
t�1g =P

k jyt � ĤT
t�1�kj

2P (Xt = �kjYt; Ĥ
t�1)

This requires computing the probabilities

pk = P (Xt = �kjy1; � � � ; yt) for every possi-

ble realisation �k of Xt. This method is clearly

very computationaly demanding, therefore, in [3], it

has been simpli�ed, using the marginal probablities

P (X
(k)
t jy1; ; � � � ; yt; X̂

(j)

tjt�1
;8j 6= i) as intermediate val-

ues to approximate pi (X
(k)
t denoting the kth +1 com-



ponent of Xt). Then, we can show ([3]) that for high

SNR levels, the function performed during the E-step

is approximated by:

Lt(H; �
2) =

nX

p=0

�(n�p)[�
1

2
log(�2)�

1

2�2
jyp�H

T X̂pjpj
2]

(2)

Note that the above criterion still involves the math-

ematical expectation of the E-step through the de�ni-

tion of X̂pjp (actually being Conditional Means (CM)

estimate of Xp). The M-step consits in taking partial

derivatives of Lt(H; �
2) according to H and �2, thus

providing update equations for parameter estimation.

Our contribution is mainly to change this criterion

into a stochastic one leading to the so-called Monte-

Carlo EM (MCEM) algorithm, by approximating the

expectation of the log-likelihood by a stochastic real-

ization generated thanks to a Gibbs sampler technique

([6]), detailed below:

Eflog(P (ytjXt; H))jYt; Ĥ
t�1g � jyt � ĤT

t�1Xt(!i)j
2

(3)

Where, Xt(!i) is sampled under the a-posteriori law

P (XtjY
t
1 ; Ĥt�1).

4. EMITTED SEQUENCE ESTIMATION

USING A GIBBS SAMPLER

Assume available at time t:

-the current estimate of the channel impulse response

Ĥt

-an estimation of the noise variance �̂2t
-an estimate of the state vector Xt�1, denoted by

X̂t�1jt�1. Therefore, because of the state eq. (1),

a �rst prediction of the state vector Xt is chosen as

X̂tjt�1 = A � X̂t�1jt�1. Then a re�ned estimate of Xt

is obtained as random samples, generated by a Gibbs

sampler at time t.

Following the same idea as in ([3]), we approxi-

mate, as mentioned above the a-posteriori probability

P (XtjY
t
1 ; Ĥt�1) as:

P (XtjY
t
1 ; Ĥt�1) �

NY

i=1

P (X
(i)
t jy1; ; � � � ; yt; X̂

(j)

tjt�1
;8j 6= i)

(4)

Then, we estimate component by component the

state vector Xt = [xt xt�1 � � �xt�N+1]
0. Let X̂

(i)

tjt
de-

notes the ith + 1 component of the estimated vector

X̂tjt. The Gibbs Sampler proceeds as follows:

� We �rst evaluate the probabilities (assuming the

modulation is a BPSK:

P
(0)

1
= P (xt = 1jx̂t�i; yt; Ĥt�1)

=
Cp
2��

exp(�
(yt � ĤT

t�1
� X (0)

t
(!))2

2�2
) (5)

With X (0)

t
(!) = [1; x̂t�1jt�1(!); � � � ; x̂t�N+1jt�1]

T

Where C is a constant normalisation. Also, we

easily compute:

P
(0)
�1 = P (xt = �1jx̂t�i; yt; Ĥt�1) (6)

= 1� P
(0)
1 (7)

� Let V denote the random variable uniformally dis-

tributed on the interval [0 1], and V (!) a realisa-

tion of V . Then de�ne the random variable x̂t as:

{ x̂t(!) = 1 if V (!) < P1

{ x̂t(!) = 1 otherwise

Clearly we have:

P (x̂t(!) = 1) = P
(0)
1

� Similarly, the update at time t of the estimation

of the symbol xt�n+1 is performed after having

evaluating:

P
(n)
1 = P (xt�n+1 = 1jY t

1 ; Ĥt�1) (8)

These last quantities are the same ones as those

already computed in ([3]) thanks to a sub-optimal

Forward recursion of the HMM formulation:

P
(n)

1
= P (xt�n+1 = 1jY t�1

1
; Ĥt�2) (9)

� Cp
2��

exp(�
(yt � ĤT

t�1 � X
(n)

t
(!))2

2�2
) (10)

Where

X (n)

t
(!) = [x̂t(!); � � � ; x̂t�n+2jt�1(!); 1; � � � ; x̂t�N+1jt�1]

T

x̂t�n+1jt(!) is then evaluated in the same way as

x̂tjt(!).

As we draw the vector X̂tjt component by component,

the computational cost is linear with the channel mem-

ory as in [4], instead of exponential as when performing

the optimal forward recursion.

5. INTERPRETATION OF THE

STOCHASTIC METHOD

All probabilities mentioned above involve gaussian

functions depending on the noise variance value �2.

For reasonable SNR levels, these gaussian functions are

su�cently peaked so that they can almost only take

the values 1 or 0. Consequently, the symbol estimates

sampled under the these probabilities will almost likely



take the value associated with the probability closed

to unity, that is the same one as when performing a

Maximum Aposteriori Probablity detection. As a con-

sequence, the behavior of such a stochastic approxima-

tion turns out to be closed to the one of a usual EM

algorithm.

The particular interest of dealing with a stochastic

approximation is its potential ability of solving many

local minima problems: the resulting excitment of the

stochastic estimated process enables the algorithm to

escape from the basin of attraction of a local minimum.

However, we observed that the use of the true value

of the noise variance leads to an algorithm, behaving

like a deterministic one. It would be of interest then

to include the noise variance in the parameters to be

estimated by the EM algorithm: as long as this vari-

ance value is over-estimated, the stochastic feature is

enhanced, thus preventing the algorithm to stay in a

local minimum. We emphasize now on the estimation

of the model parameters.

6. PARAMETERS ESTIMATES

The function to be minimized at time t by the stochas-

tic EM algorithm is written as:

Lt(H; �
2) =

nX

p=0

�(n�p)[�
1

2
log(�2)�

1

2�2
jyp�H

T X̂pjp(!)j
2]

(11)

� being a forgetting constant. The minimization of

this function is performed recursively by calculating its

partial derivatives according to H and �2. This leads

to the following update equations:

�̂2t =
1

1� �t+1
(�(1��t)�̂2t�1+(1��)jyt�H

T X̂tjt(!)j
2

(12)

and, for Ĥt:

Ĥt+1 = Ĥt +R�1
t (yt � ĤT

t X̂tjt(!))X̂tjt(!)
�(13)

Rt = �Rt�1 + X̂tjt(!)X̂tjt(!)
y (14)

Here, the use of the forgetting constant � is twofold:

As far as the update of H is concerned, it allows to

track slow variations of the channel as it in the case for

mobile-communications. But it has also a particular

interest as for estimating the noise variance: one can

see in equation (12) that the estimated value performed

at time t� 1 is weighted at time t by �, thus allowing

the estimation process to "forget" the �rst estimates

which are not reliable any more.

7. INTERESTS OF THE METHOD

Advantage of an HMM formulation for

equalization: The use of the Forward variable allows

the estimate on each symbol to be revisited as long as

this symbol is seen by the channel memory, thanks to

the informations provided by the whole set of available

observations. This results in an improved BER. Note

that the suboptimal formulation leading to a reduction

of the complexity , does not result in a signi�cant loss

of performances as it was already the case in [3].

Advantage of the Gibbs Sampler method As

pointed out in the introduction, this stochastic version

of the EM algorithm is useful as for solving initiali-

sation and local minima problems: the probabilities

used in the Gibbs sampler decribed above are gaussian

functions depending on current value of the estimate

of �2. Note that in the actual algorithm, this noise

variance is estimated during the M-step of the MCEM

algorithm. As long as this variance estimate is much

greater than the true one, the symbols estimates drawn

by the Gibbs sampler are not reliable, this fact result-

ing in a persistent excitation on the adaptation process.

As a consequence, the Fisher matrix has a better con-

ditioned number compared the one of a standard EM

algorithm as shown on �gure 3. This results �rst in bet-

ter convergence rate which is easily checked on �gure 2.

Also, the excitation is such as a local minimum cannot

be a satisfactory solution. When the estimated likeli-

hood reaches the bassin of attraction of some signi�cant

maximum, the noise variance estimate signi�cantly de-

creases. Thus, the symbol estimates are similar to CM

ones, and concequently, the MCEM algorithm almost

behaves like the EM algorithm.

The resulting algorithm works on-line. The al-

gorithm described in the full paper has an adaptive-like

structure.

8. SIMULATIONS

The algorithm has been performed on both minimum

and non-minimum phase channels, for a SNR of 13db.

The �rst example illustrates the interest of the MCEM

over the EM algorithm. We chose the following chan-

nel: H = [1 � 1 0:5]. Fig.1.1 depicts the trajectories of

the algorithm in the map H(0), H(1). One can see that

in this particular case, the EM algorithm converges to

a local minimum (Ĥ = [1 � 0:5 � 0:5]) for di�erent

initialisations (we show however a case where it does

converge to the true parameters).

In constrast, one can see on Fig 1.2 that the MCEM

algorithm converges to the global maximum, for the

same initialisations, even initialised on the local mini-

mum of the EM algorithm.

Fig 1.3 plots the noise variance estimate versus the

number of iterations. One can note the accuracy of

the �nal estimate value (�2 = 0:0503).

Fig 1.4 shows the estimate values of the channel param-



eters on a non-minimum phase channelH = [0:5�10:3]

(the 2 zeros of the corresponding transfer function be-

ing z1 = �1:36 and z2 = 0:3). Note the fast conver-

gence (less than 500 symbols).

9. CONCLUSION

We proposed here an on-line algorithm, providing at

each step an estimate of the impulse response of the

channel and the noise variance thanks to a stochastic

version of the standard EM algorithm (a Monte-Carlo

EM alorithm), as well as a detection of the emitted se-

quence via a Gibbs sampler approach. The obtained al-

gorithm takes advantage of the HMM properties with-

out the drawback of the high computational complex-

ity, and the stochastic version appears to be usefull

for solving initialisation problems. The asymptotic be-

havior of the proposed algorithm can be shown to be

similar to that of the standard EM algorithm. It has to

be pointed out that this stochastic version classically

used in the o�-line contex, is also suitable for on-line

processing.
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Fig. 2: MCEM algorithm
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Figure 1. Fig 1.1, Fig 1.2, Fig 1.3, Fig 1.4
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Figure 2. Quadratic Error on parameters, for a

SNR of 15db
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Figure 3. Fisher Matrix Conditioned number


