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ABSTRACT

This contribution deals with the problem of blind channel
identi�cation and equalization based on the (temporally or
spatially) oversampled channel output. A novel algorithm
is presented which builds on a multistep prediction (MSP)
approach and can be viewed as a certain generalization of
the initial Linear Prediction Algorithm (LPA) proposed in
1994. Our algorithm improves on most recent related works
in that it is theoretically and practically unsensitive to the
critical and expected problem of channel length mismatch.
Moreover, the MSP scheme improves on the conventional
LPA by increasing the robustness of this earlier algorithm.
In contrast with the LPA, the proposed prediction scheme
exploits the full channel structure, thus providing more sta-
tistical e�ciency in channel identi�cation. A direct symbol
recovery algorithm (requiring no channel estimate) is also
straightforwardly drawn from our approach.

1. INTRODUCTION

Blind multichannel identi�cation and equalization exploit-
ing the channel diversity induced by sensor arrays and/or
fractional sampling (single input/multiple output) has at-
tracted a lot of attention in the last four years. Numer-
ous methods can now be found in the literature, based on
various second-order criteria, which o�er promising alter-
natives to the previously reported higher-order based tech-
niques. Basically, the channel diversity framework (in which
the same discrete source signal is observed through sev-
eral linear �lters sampled at source's rate) induces a useful
\signal overdetermination" which can be successfully ex-
ploited in terms of signal/noise subspaces decompositions.
Reminiscent of classical narrow band array processing tech-
niques, most second-oder methods developed so far do rely
on such decompositions, in either a stochastic (see for in-
stance [8, 12]) or deterministic (see [5, 6]) way. Other sub-
space methods also incorporate alphabet related knowledge
to further (i) improve the performances and/or (ii) address
the equalization problem with more than one source (mul-
tiple input/multiple output) [7].

It is known however that subspace approaches gener-
ally do not tolerate mismatched or even ill-de�ned channel
lengths since they require explicit knowledge of the \source"
(or \noise") subspace dimension to work [2]. This is a ma-
jor limitation to their practical applicability. In contrast,
the alternative Linear Prediction Algorithm, proposed and

then re�ned by Slock et al. [1, 2, 3] proved to be consistent
in the presence of channel order errors. Note that other
authors also reported similar robustness properties of their
algorithms, but on experimental basis only [10, 11]).
Though this important property makes the LPA one of

the potentially most attractive solutions to the blind multi-
channel equalization problem, the initial algorithm of [1, 2]
lacks robustness because it fails in exploiting the channel
structure completely. In particular, the algorithm overall
performances rely on the particular realization of the mul-
tichannel precursor coe�cient. The reason for this is that
only a one-step predictor is used in [1, 2], yielding a predic-
tion error signal with uncontrollable symbol-to-noise ratio.
Here we investigate a more general framework based on

a multistep prediction approach which, importantly, is still
consistent in the presence of channel length mismatch. The
main result here is that several multistep prediction error
signals can be used to triangularize the multichannel system
and then combined to exhibit the full channel structure. In
contrast, the initial LPA only involves a one-step predictor,
leading to causal channel equalization. A channel identi�ca-
tion algorithm is derived which is statistically more e�cient
than that of the LPA, at the expense of a higher compu-
tational cost. A direct linear non-causal symbol estimation
procedure is also easily drawn from the MSP approach.
Notations: E() statistical expectation; ()� complex con-

jugation; ()t transposition; ()+ transpose-conjugation; j : j
L2-norm of a vector or matrix; 0i�k: i� k all-zero matrix.
Ik identity matrix of size k.

2. MULTICHANNEL REPRESENTATION

Consider the sample output of a 1-input/L-output base-
band communication channel with �nite-order (M) impulse
response h(0);h(1); ::;h(M):

x(n) =

MX
k=0

s(n� k)h(k) + b(n): (1)

Here s(n) and b(n) denote respectively the mutually and
individually white symbol (unit-variance) and noise (with
variance �2b) sequences. In our L-channel framework,
x(n);h(k);b(n) are all L � 1 vector quantities. Stacking
N �M successive samples in

XN (n) = [x(n)t;x(n� 1)
t
; :::;x(n�N + 1)

t
]
t
;

BN (n) = [b(n)t;b(n� 1)t; :::;b(n�N + 1)t]t



yields the well-known linear model, where both channel and
symbols are unknown desired quantities:

XN(n) = HNSK(n) + BN(n) (2)

where K = M +N is the number of symbols involved be-
tween time n and n�N + 1. We have in addition:

HN =

0
@

h(0) � � � h(M) 0 � � � 0

...
0 � � � 0 h(0) � � � h(M)

1
A

SK(n) = [s(n); ::; s(n�K + 1)]t:

The fundamental channel \length and zero" condition for
second-order deconvolution can be restated as follows:

(H1) At least one channel has exact degree M (the other
degrees being possibly lower).

(H2) The z-transforms of the channel impulse responses
do not share any common zero.

Under (H1), (H2), HN is a left-invertible matrix [4].

3. PREDICTION-ERROR METHODS

Generally speaking, prediction error methods aim at re-
covering the channel inverse through the whitening of the
observations, under the fundamental i.i.d input condition.
Fore usual (mixed-phase) monochannel systems, the white-
ness condition is too weak to allow phase and amplitude
equalization. In the monochannel case, the prediction crite-
rion (if one wishes to use it) then must be augmented with
a non-linear higher-order based criterion (CMA or other)
as was proposed for instance in [9].
As an important di�erence, there exist exact FIR chan-

nel inverses in the multichannel context. Relying on this
property, the main idea of prediction-error methods for mul-
tichannel equalization and identi�cation consists in noting
that the noise free received signal x(n), while MA by con-
struction, is at the same time a �nite-order (N) AR signal
by nature under (H3) [2]. Consequently, the input sequence
s(n) is also found to be the �nite-horizon innovation process
of x(n), hence can be recovered by prediction-error �ltering.
The basis for the conventional LPA [1, 2] is as follows:

Lemma 3..1 Let P be a LN �L complex-valued matrix of
prediction coe�cients. Let ~x(n) be the L�1 prediction error
de�ned by: ~x(n) = x(n) � P+XN (n � 1). The minimum
prediction error variance J(P ) = E j ~x(n) j2 is attained if
and only if:

~x(n) = (IL ;�P
+)XN+1(n) = h(0)s(n) (3)

Note that the channel order M need not be known to use
the prediction algorithm (in fact, one should choose N so
as to at least overestimate M) which makes the method ro-
bust towards the likely order estimation errors, in contrast
with most subspace approaches. Based on (3), a possible
approach to blind channel equalization consists in 1) solv-
ing the noise free prediction problem corresponding to the
minimization of J(P ), and 2) using the prediction-error �l-
ter (I ;�P+) as a particular channel FIR causal inverse
as proposed in [1]. Since however the performances of this

equalization method critically depends on the SNR (uncon-
trollable) on h(0)s(n), it is preferable to identify the chan-
nel �rst. To this end, the prediction error ~x(n) can be used
as a training sequence against which one may correlate the
measured signals to estimate the channel characteristics as
in a input/output method.
Clearly, the fact that the prediction error signal only de-

pends on very partial channel information (namely, only
the �rst coe�cient of the impulse response) may result in
unreliable (symbol or channel) estimates for some particu-
lar realization of the channel coe�cients. A partial answer
to this problem was investigated in [3] in terms of moving
the dependance onto h(i); i > 0, instead of h(0). in this
paper, we investigate a more general and e�cient solution
which builds on a generalization of the initial prediction
framework.

4. MULTI-STEP PREDICTION

Let M̂ be an arbitrary estimated channel order such that
M̂ � M . Consider the i-step prediction problem at the
multichannel output, corresponding to the minimum vari-
ance estimation of x(n), given the past samples: x(n � i),

x(n�i�1),...,x(n�N), whereN is chosen such thatN > M̂ .
An i-step predictor, denoted by Pi, is an L(N� i+1)�L

complex-valued matrix minimising

Ji(Pi) = E j x(n)� P
+
i XN�i+1(n� i) j2

It is found with previous notations that

� J() = J1().

� P = P1.

Lemma 4..2 (System Triangularisation) Let the i-step

prediction error �lter, for i = 1; M̂ + 1, be de�ned as


i = (IL;0L�L(i�1);�P
t

i )
t
:

We temporarily assume a noisefree model (�2b = 0). Then,
assuming (N +1)(L� 1) � LM , the i-step prediction error

signal is given by, for all i of 1; M̂ + 1:

~xi(n)
def
= 
+

i XN+1(n) =

i�1X
k=0

h(k)s(n� k) (4)

Proof For i �M+1, i then being greater than the chan-
nel memory, the prediction has clearly no e�ect: ~xi(n) =
x(n), since there is no correlation between predicted and
prediction variables. The proof of (4) for i � M is as fol-
lows. Using the well-known orthogonality principle at opti-
mality, it comes from (2):

E(XN�i+1(n� i)~xi(n)
+) = 0

E(HN�i+1SK�i+1(n� i)XN+1(n)
+
)
i = 0

HN�i+1E(SK�i+1(n� i)SK+1(n)
+)H+

N+1
i = 0

HN�i+1(0K�i+1�i; IK�i+1)H
+
N+1
i = 0(5)

Under (H1), (H2), HN�i+1 has full column rank. Moreover,
the prediction error �lter is strongly structured, so that (5)



yields

(0K�i+1�i; IK�i+1)H
+
N+1
i = 0



+
i HN+1 = (h(0); ::;h(i� 1);0; ::;0)

then 

+
i
XN+1(n) =

i�1X
k=0

h(k)s(n� k) 2

Remark: In a batch formulation, the predictors are ob-
tained through resolution of several di�erent Yule-Walker
equations, instead of one in the LPA. For the i-step prob-
lem, Yule-Walker equations are classically given by

RN�i+1Pi = E(XN�i+1(n� i)x(n)+); (6)

where RN�i+1 is the covariance of XN�i+1(n), and from
which the noise contribution has to be removed in some
way to estimate unbiased predictors in a noisy situation. To
this end, the noise level can be estimated from the smallest
eigenvalues of RN in a batch implementation. Non trivial
adaptive procedures for computing unbiased solutions to (6)
can also be found in [13].

4.1. Utilization of the predictors

(4) o�ers a simple generalization of (3): The one-step pre-
diction �lter completely eliminates the ISI while, more gen-
erally, the i-step prediction error �lter reduces the IIS order
from M to i� 1. Then, the action of the multistep predic-
tion error �lters can be seen as a triangularization of the
multichannel system. The di�erent �lters can be straight-
forwardly exploited using pair-wise combinations as follows.
Let Z(n) be the L(M̂ + 1) � 1 vector signal de�ned ac-

cording to:

Z(n) = (XN+1(n)
t
�1;XN+1(n+ 1)t(
2 �
1)

�

; :::;

XN+1(n+ M̂ )t(

M̂+1 �


M̂
)�)t (7)

involving delayed versions of all prediction error signals. In
the absence of noise, it comes:

Z(n) = hs(n); (8)

where h = (h(0)t;h(1)t; ::;h(M)t;01�L(M̂�M))
t is the

column-wise global channel impulse response. Note that, in
contrast with (3), (8) involves all channel coe�cients, thus
removing the problematic exclusive dependancy on h(0).
In a practical situation though, we deal with a noisy Z(n)

signal:
Z(n) = hs(n) + �B(n); (9)

where �B(n) is a �ltered noise sequence obtained from:
(please recall (7))

�B(n) = (BN+1(n)
t
�1;BN+1(n+ 1)t(
2 � 
1)

�

; :::;

BN+1(n+ M̂)t(

M̂+1 �


M̂
)�)t

4.2. Channel Identi�cation

Equation (9) suggests to simply extract h (up to a scalar
constant) from Z(n), for channel identi�cation. It is how-
ever statistically more e�cient to deal with the covariance
matrix of Z(n):

RZ
def
= E(Z(n)Z(n)+) = hh

+ + �
2
bR �B; (10)

where R �B is the normalized covariance of �B(n). Note that
RZ (resp. R �B) is easily expressed in terms of the prediction
coe�cients and of the received signal (resp. noise) correla-
tion coe�cients. A straightforward procedure then consists
in extracting the dominant eigenvector of the denoised co-
variance RZ � �2bR �B in order to obtain a channel estimate.

4.3. Symbol recovery

A channel estimate can be used for non-linear (maximum
likelihood) symbol recovery typically. However, a direct
linear estimation of the transmitted symbols is also possible
through a proper combination of the entries of Z(n). Let

U be a L(M̂ + 1)� 1 complex-valued combiner:

U
+
Z(n) = �ŝ(n); (11)

where � is a scalar undetermination. Note that the estima-
tion in (11) is strictly non causal, since ŝ(n) carries both
past and future received information.
Possible solutions for U include:

� The optimal solution in terms of output SNR:
argmax(U+RZU)=(U

+R �BU). (this solution is how-
ever numerically ill-posed due to the rank de�ciency of
R �B, which itself results from the redundancy in �B(n)).

� The (sub-optimal) maximum output power (MOP) so-
lution: argmax(U+RZU)=(U

+U). This solution is
more appropriate due to better conditioning. It is
found that U ! h when �2b ! 0.

5. SIMULATIONS

We illustrate the behaviour of the (batch based) MSP
scheme above and provide a comparison with the one step
LPA of [2]. Monte-Carlo simulations are conducted in the
following context: L = 2 channels of degree M = 4, driven
by a white QPSK sequence. Channel one: (�0:05+0:27j)+
(�0:37�0:01j)z�1+(0:02�0:07j)z�2+(�0:21�0:03j)z�3+
(0:5 � 0:6j)z�4. Channel two: (0:25 + 0:27j) + (�0:1 +
0:38j)z�1+ (0:22� 0:05j)z�2+(0:26+0:14j)z�3+(0:17�
0:72j)z�4. The output SNR is de�ned as in [12].

� Fig. 1 shows the statistical performance in terms of
channel estimate variance for the scheme presented in 4.2..
An overestimated channel order is fed into the algorithm,
with M̂ = 5. Results are averaged over 100 independent
realizations and the normalized variance (NV) is plotted
for di�erent sample sizes:

NV =
<j ĥ� h j2>100

j h j2
(12)

where < : >100 denotes the averaging operation. A severe
5 dB SNR is simulated. We plot the result achieved by the
Subspace Method of [12] under similar conditions.
The MSP algorithm consistently provides better results

than the LPA, for any sample size. The advantage of a
prediction approcah over a subspace approach is also con-
�rmed: the Subspace Method does not work in the presence
of channel length mismatch.
� Fig. 2 compares the results of direct linear symbol esti-

mations based on (a) combining the prediction error signals



in the MSP scheme, as described in 4.3., and (b) combining
the one-step prediction error signals in a conventional LPA.
The SNR is set to 25 dB. In each experiment, we use the
MOP combiner and plot the equalized constellations. The
MSP algorithm linearly combines L(M̂ + 1) error signals
and outperforms the LPA which only uses L causal error
signals. The one-step predictor eliminates the ISI but dra-
matically degrades the symbol to noise ratio. Note however
that in both cases, the SNR in the linear symbol estimates
is directly related to the predictors gains, which cannot be
fully controlled, hence limiting the applicability of these di-
rect equalization techniques.
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Figure 1. Channel identi�cation with the MSP

method. Comparison with LPA and Subspace Al-

gorithm. RSB= 5dB, N = 10.
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Figure 2. Output of the equalizer combining chan-

nel one and channel two. �g.(a): MSP method.

�g.(b): LPA method. RSB= 25 dB, N = 10. 1000

samples are used.

6. CONCLUSION

The Multi Step Prediction approach for blind channel iden-
ti�cation/equalization o�ers a simple generalization of the
initial Linear Prediction Algorithm. Like the LPA, it is con-
sistent in the presence of channel length mismatch, thus im-
proving on the vast majority of existant (typically subspace-

based) solutions. It is also statistically more e�cient than
the LPA because it exploits more completely the channel
structure and exploits typically more second-order informa-
tion, at the expense of a higher computational cost. The
MSP approach can be used for channel identi�cation as well
as for direct symbol recovery. In the latter case however,
the equalization performances are limited by the (hardly
controllable) gains of the prediction error �lters.
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