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ABSTRACT

A new four-parameter atomic decomposition of chirplets

is developed for compact representation of signals with

chirp components. The four-parameter atom is ob-

tained by scaling the Gaussian function, and then ap-

plying the fractional Fourier transform (FRFT), time-

shift and frequency-shift operators to the scaled Gaus-

sian. The decomposition is realized by extending the

matching pursuit algorithm to four parameters. For

this purpose, the four-parameter space is discretized

to obtain a dense subset in the Hilbert space. Also,

a related time-frequency distribution is developed for

clear visualization of the signal components. The de-

composition provides a more compact and precise rep-

resentation of chirp components as compared to the

three-parameter ones.

1. INTRODUCTION

One of the main research interests in signal process-

ing is to decompose signals into well-de�ned and local-

ized components in the time-frequency plane, which are

called time-frequency atoms. Also, a clear and readable

display of the energy distribution of a signal is desired.

Various decompositions with atoms up to three param-

eters have been used in the literature such as the Ga-

bor expansion, wavelet transform [1] and the wavelet

packets, [2], [3]. However, these tools fail to represent

chirp-like components in a compact and precise way.

Recently, Mann and Haykin have used the time-

shift, frequency-shift, scale, frequency-shear (chirp mul-

tiplication) and the time-shear (chirp convolution) op-

erators to construct the chirplet transform for clear

analysis of the chirp components [4]. Two-parameter

subgroups of this transform were studied in [5].

In this paper, we have used the rotation opera-

tor in the time-frequency plane, to extend the three-

parameter decompositions for compact representation

of chirp-like components. Since the rotation corresponds

to an orthogonal transformation of the time-frequency

plane, which is shape-preserving, it is a more direct ex-

tension of the three parameters. Rotation is performed

by using the fractional Fourier transform (FRFT) op-

erator [6]. By applying the scaling, rotation, time-shift

and frequency-shift operators to the Gaussian function,

the four-parameter chirplet atom is obtained.

A decomposition that expands any function in terms

of these four-parameter atoms, is developed. The de-

composition is realized by adapting the matching pur-

suit algorithm [3] to four parameters. The four-param-

eter space is carefully discretized to obtain a complete

discrete set which is suitable for e�cient computation.

Also, a time-frequency distribution (TFD) that pro-

vides a clear and readable display of the decomposition

is developed.

2. ATOMIC DECOMPOSITION OF

CHIRPLETS

For local analysis of signals, the set of time-frequen-

cy atoms should be highly concentrated in the time-

frequency plane. Since the Gaussian occupies the min-

imum area in the time-frequency plane, it is used as an

elementary atom. Applying a series of area-preserving

operators to the Gaussian function, the chirplet atom

is obtained.

Rotation in the time-frequency plane is achieved by

using the FRFT, which is de�ned as [6]
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where �� is the rotation operator. The minus sign in

��� is used to de�ne the counter-clockwise direction in

the time-frequency plane as the positive direction of ro-

tation. Use of the rotation operator results in a confu-

sion of manipulating the time and frequency variables,

which have di�erent units, as having the same unit. To

solve this problem, dimensional normalization of the



time-frequency plane is developed in [7]. Throughout

this paper, it is assumed that, this dimensional nor-

malization was performed, and the time-frequency axes

have the units of
p
rad.

The Gaussian, g(t) = 1
�1=4

e�
t2

2 , is scaled to obtain

gs(t)
�
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s
g( t

s
). The rotated atom is obtained by ap-

plying the rotation operator to the scaled Gaussian.

Then, the time and frequency shifts are applied suc-

cessively to obtain the four-parameter chirplet atom

as
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where �
�
= (s; �; u; �) is the index of the atom. The set

of indexes �, are chosen such that the resulting set of

atoms are unique,
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The scaled and rotated atom gs;�(t) is found as
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. Atoms are normal-

ized, i.e., jjg�(t)jj = 1. The e�ects of these operations

to the Wigner distribution (WD) of the basic atom are

shown in Fig. 1. From this �gure it is obvious that,

s shows the window size when � = 0. When rotation

occurs (� 6= 0), s is a measure of the directivity (d�)

of the Gaussian atom. Directivity can be thought as

the aspect ratio of the Gaussian blob and de�ned as

d�
�
= s2. The parameters �; u and � indicate the orien-

tation, time-center and frequency-center of the atom in

the time-frequency plane, respectively. Rotation angle

is a measure of the chirp-rate of a local signal compo-

nent.

The set of functions, which is called the dictio-

nary, D �
= fg�(t)g�2� is complete 1 in the Hilbert

space. Since the set is highly redundant, an appropri-

ate countable subset of the atoms fg�n(t)gn2N with

�n = (sn; �n; un; �n) must be selected such that any

signal f(t) can be written as

f(t) =

1X
n=0

ang�n(t): (5)

1It is shown in [8] that the set of three-parameter wavelet

packets is complete. Since the three-parameter dictionary is a

subset of the chirplet dictionary, the four-parameter set is com-

plete, as well.

Figure 1: Change of the WD of an atom with param-

eters: (a) Wg(t; !), (b) Wgs(t; !), (c) Wgs;�(t; !), (d)

Wgs;�(t� u; !), (e) Wg� =Wgs;�(t� u; !� �).

In order to realize this decomposition the matching

pursuit algorithm [3] is used. Matching pursuit is an

iterative algorithm that selects an element at each iter-

ation from a dictionary of atoms D to best match the

inner structures of a signal, and �nds its corresponding

coe�cient.

Although the algorithm is de�ned for three-parame-

ters originally, it can be extended to larger dictionaries,

provided that some constraints are satis�ed. First, D
must be a complete set, which is shown above. Second,

atoms must be normalized (unit energy) and have a

decay of O( 1
t2+1

) [3]. By checking equation (4), it can

be easily shown that this is satis�ed. The main issue

in the adaptation of the dictionary to the matching

pursuit algorithm is to obtain a discrete sub-dictionary

D� [3], which satis�es

sup
�2��

j< f; g� >j � � sup
�2�

j< f; g� >j ; 0 < � � 1: (6)

where � and �� are the continuous and the discrete in-

dex sets, respectively. The discrete index set is de�ned

in the next section, where � 2 �� , g�(t) 2 D�. The

set �� is generally much smaller than �, so that the

search time for the optimum index is limited e�ciently.

3. THE DISCRETE DICTIONARY

In [3], a three-parameter discrete set is developed, that

is the ensemble of Gabor lattices indexed by the scale

parameter. In this section, the discrete four-parameter

set that satis�es (6) is de�ned. This set is a family of

rotated three-parameter lattices as shown in Fig.2.



Figure 2: A lattice mapping for ai = 2 and �m = 45�.

We de�ne the discrete four-parameter index set as

��
�
= (ai; �m; l(q; p)�u; k(q; p)��)where a > 1; i; l(q; p);

k(q; p);m; q and p are all integers. The discrete angles

are given by
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where r
�
= i�i0 is the relative scale index with i0 2 Z+,

and m1 = 2a2r � m;m2 = 2a2r + m. The intervals

are de�ned as I1 = [�a2r; a2r]; I2 = (a2r; 2a2r) and

I3 = (�2a2r;�a2r). The �xed scale index i0 spec-

i�es the scale where the rotation begins. Time and

frequency discretization step lengths and their corre-

sponding indexes are given respectively as
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where �b;�u;�� 2 R+.

As seen from Fig. 2, �m's are the discrete angles

that map lattices in the rotated coordinates to the lat-

tices in the Cartesian coordinates. The points (l(q; p)�u;

k(q; p)��) in the Cartesian coordinates are the projec-

tions of the lattice points (qai�b; pa�i�b) in the ro-

tated coordinates. The discrete step length �b is se-

lected as �b =
q

2�
R
, where R > 1 is the redundancy

ratio [3]. The following theorem veri�es that this dis-

crete parameter set satis�es the required constraint.

Theorem 1 Let the rotation occurs only for i � i0 >

0. Let �� = (ai; �m; l(q; p)�u; k(q; p)��) which is de-

�ned above, be the discrete set of all indices � that is a

subset of � de�ned in (3). Then there exist a constant

� > 0 such that for all f(t) 2 L2(R)

sup
�2��

j< f; g� >j � � sup
�2�

j< f; g� >j : (8)

The proof 2 of the theorem is given in [9].

4. THE TFD AND THE

IMPLEMENTATION

Using the matching pursuit algorithm with the four-

parameter discrete dictionary, any signal f(t) can be

decomposed as in (5). The three-parameter TFD de-

�ned in [3] can be extended to the four-parameter case

by adding the weighted WDs of the atoms in (5) as

shown below

Ef (t; !)
�
=

1X
n=0

janj2Wg�n
(t; !): (9)

Since the matching pursuit is an energy-preserving de-

composition [3], this TFD also preserves energy. The

TFD, that is positive and free of interference terms,

provides a clear and readable picture in the time-fre-

quency plane.

The number of angles used in the discrete dictionary

D� can be limited by specifying a minimumangular res-

olution which is independent of the signal length. The

numerical complexity of the four-parameter decomposi-

tion is higher than the three-parameter one by a factor

of at most the maximum number of discrete angles.

A synthetic signal, shown in Fig.3, is decomposed

with the three-parameter and the four-parameter dic-

tionaries. In Fig. 4 and Fig. 5, the three-parameter

and the four-parameter TFDs of the signal are shown,

respectively. Note that, the two chirps crossing each

other are tracked with two rotated atoms in Fig. 5,

2The proof is the straightforwardextension of the correspond-

ing proof of the three-parameter one given in [3].
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Figure 3: A synthetic signal composed of various time-

frequency structures.

although the same components are represented with

many atoms in Fig. 4, which results in a dilution of an

information.
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Figure 4: Three-parameter TFD of the signal in Fig.3.

Contour plot of the TFD is displayed, where darker

regions have higher energy.
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Figure 5: Four-parameter TFD of the reconstructed

signal in Fig.3.

5. CONCLUSIONS

As seen from the above examples, the four-parameter

decomposition provides a more compact and accurate

representations of the chirp components as compared

to the three-parameter ones. The decomposition is es-

pecially useful for chirp and instantaneous frequency

analysis. The related TFD is used for a clear visualiza-

tion of the signal components in terms of well-de�ned

energy areas in the time-frequency plane. The time-

frequency structures of complex signals can easily be

identi�ed with this TFD.
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