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ABSTRACT

Nonstationary signals appear often in real-life applica-
tions and many of them can be modeled as polynomial
phase signals (PPS). High-order ambiguity function (HAF)
was �rst introduced to estimate the parameters of a sin-
gle component PPS. But due to its high nonlinearity, HAF
has not been widely used for multi-component PPS which
appear for example, in Doppler radar applications when
multiple targets are tracked simultaneously. We present
a theory in this paper that HAF is virtually additive for
multi-component PPS and illustrate our �ndings with nu-
merical simulations.

1. INTRODUCTION

Signals encountered in engineering applications such as
communications, radar, and sonar often involve amplitude
(AM) and/or frequency modulation (FM). An AM-FM sig-

nal can be written as x(t) = �(t)ej�(t), where �(t) represents
the time-varying amplitude and �(t) stands for the phase.
The instantaneous frequency is found as f(t) = d�(t)=dt.
Although non-parametric techniques are available to track
amplitude and frequency variations, we focus on paramet-
ric models here because they o�er parsimony and inherently
unlimited resolution.
The phase function of a large class of AM-FM processes

can be modeled by a polynomial function of t. It is known
that in active systems, radar echoes from maneuvering tar-
gets have nonlinear phase characteristics, which depend on
the target trajectory. In Kelly [2], a radar echo is expressed

as x(t) = �(t)ejr(t), and the trajectory is approximated by
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From (1) we see that radial velocity vy introduces a linear
phase term in x(t); radial acceleration ay and cross-range
velocity vx induce a quadratic phase term; ax and vx con-
tribute a cubic phase term, and so forth. The coe�cients
of the power series of r(t) are thus related to the kinetic
parameters of the moving target, cf. also Rihaczek [6]. Ac-
cording to the Stone-Weierstrass theorem, any continuous
function (such as r(t)) over a closed interval can be approx-
imated uniformly by a polynomial function. Therefore the
class of PPS is rather broad.
Single-component PPS have been investigated exten-

sively in recent years using the high-order ambiguity func-
tion (HAF), introduced by Peleg and Porat [3] (see e.g., [5,
Ch. 12]). HAF has proven e�ective for parametric estima-
tion of single-component PPS, and results on constant, ran-
dom, as well as time-varying amplitude single-component
PPS have appeared (see e.g., [10] and references therein).

However, signals arising from real life applications of-
ten have multiple components, and their estimation poses
a great challenge. The e�ectiveness of HAF for single com-
ponent PPS lies in the fact that it reduces a PPS of appro-
priate order to a line in the frequency domain. But since
HAF is nonlinear, many cross-terms appear when it is ap-
plied to multicomponent PPS. These cross terms amount
to the so-called \deterministic noise" e�ect. Issues such as
how the magnitudes of such noise terms compare with the
strengths of the signal peaks and whether they are narrow-
band or broadband have not been thoroughly investigated
before and are being addressed in this paper.
In Section 2 of this paper, we review HAF and the re-

lated concepts for single component PPS. In Section 3, we
focus on multi-component chirp signals (PPS of order 2)
and examine the e�ect of the cross-terms. The results of
Section 3 are then generalized in Section 4 to Mth-order
multi-component PPS. Proofs of all theorems can be found
in [9].

2. HAF AND SINGLE-COMPONENT PPS

HAF was originally devised to estimate the phase coe�-
cients of a single-component constant amplitude PPS of or-
der M ,

y(t) = � e
j�(t) = � e

j
P

M

m=0
amtm

: (2)

In this paper, we assume that the data are in discrete-
time; i.e., t = 0; 1; : : : ; T � 1. For integer � 6= 0, de�ne
P2[y(t); � ] = y(t)y�(t�� ), which can be viewed as a second-
order instantaneous moment of y(t). Since multiplying y(t)
by its conjugated and lagged copy y

�(t � � ) is equivalent
to di�erencing in the phase of y(t), it follows easily that
P2[y(t); � ] is a new PPS of order M � 1. The above op-
eration can then be repeated to eventually reduce a PPS
of any order to a complex constant. Each product process
is called a high-order instantaneous moment (HIM) of y(t).
Its general form was �rst introduced by Peleg and Porat
(see e.g., [5, Ch. 12]). We quote their results here for easy
reference.
Let y(t) be a complex valued signal, and de�ne y(�q)(t) =

y(t) for q even, y(�q)(t) = y
�(t) for q odd. The Mth-order

HIM operator is de�ned as

PM [y(t); � ]
4
=

M�1Y
q=0

[y
(�q)

(t� q�)]

�
M � 1

q

�
; (3)

where
�
M � 1

q

�
is the binomial coe�cient. For y(t) of (2),

we have

PM [y(t); � ] = �
2M�1

e
j~!t+~�

; ~!
4
= M ! �

M�1
aM : (4)

We notice that PM [y(t); � ] reduces the Mth-order PPS
of (2) to a constant amplitude harmonic with amplitude



�
2M�1 , frequency ~! and phase ~� (~� is a function of the am's
and is not of concern here). HIM of order > M reduces an
Mth-order PPS to a complex constant.
Since PM [y(t); � ] is a periodic sequence, we consider its

Fourier series (FS) coe�cient for � 2 [��; �),

PM [y;�; � ]
4
= lim

T!1

1

T

T�1X
t=0

PM [y(t); � ] e
�j�t

; (5)

which we term the high-order ambiguity function (HAF).

Substituting (4) into (5), we obtain PM [y;�; � ] = �
2M�1

e
j ~�

�(� � ~!), where �(�) denotes the Kronecker delta func-

tion. Therefore, PM [y;�; � ] peaks at ~! = M ! �M�1aM , and
the highest order polynomial phase coe�cient aM can be
obtained from its peak location as

aM =
1

M ! �M�1
arg max

�

���PM [y;�; � ]

���: (6)

Next, by multiplying y(t) with expf�jaM t
Mg, we obtain a

PPS of order M � 1. The above procedure is then repeated
to yield aM�1. Subsequent iterations yield aM�2; : : : ; a1,
cf. [5, Ch. 12]. Finally, � expfja0g can be estimated via
linear least squares.
In practice, additive noise is present and we receive

x(t) = y(t) + v(t) = � e
j
P

M

m=0
amtm

+ v(t): (7)

To compute the sample estimate of the HAF, we �rst sub-

stitute y(t) by x(t) in the HIM operator: P̂M [y(t); � ]
4
=

PM [x(t); � ], and then take its normalized DFT,

P̂M [y;�; � ]
4
=

1

T

T�1X
t=0

P̂M [y(t); � ] e
�j�t

: (8)

Asymptotic unbiasedness and consistency of (8) were estab-
lished in [10] (see also [5, Ch. 12]) when v(t) is zero-mean

white Gaussian. Once P̂M [y;�; � ] is computed, aM can be

estimated by replacing PM [y;�; � ] by P̂M [y;�; � ] in (6).

3. MULTI-COMPONENT CHIRP SIGNALS

In Doppler applications and when dealing with multiple
moving targets, the returned echo can be modeled as a
multi-component PPS,

y(t) =

LX
l=1

yl(t) =

LX
l=1

�l e
j
P

M
l

m=0
al;mtm

(9)

where each yl(t) is a constant amplitude PPS of order Ml.
When the nonlinear HIM operator PM is applied to y(t),
many cross-terms will emerge,

PM [y(t); � ] =

LX
l=1

PM [yl(t); � ] + cross-terms: (10)

For an L-component signal with all Ml = M , the number

of cross-terms is L2M�1�L, which gives two cross-terms for
L = 2, M = 2 and 14 for L = 2, M = 3. Although the L
auto-terms become harmonics, these cross-terms remain as
PPS. In this section we shall study the M = 2 (chirp) case
in detail. In particular, we focus on the two-component

(L = 2) case here because generalization to L > 2 com-
ponents is straightforward. A two-component chirp signal
with constant amplitudes is give by

y(t) = �1e
j(a10+a11t+a12t

2)
+ �2e

j(a20+a21t+a22t
2)
: (11)

The components are considered as distinct if their respec-
tive instantaneous frequencies, al1 + 2al2t, are di�erent.
It is not di�cult to show that the 2nd-order instantaneous

moment of y(t) in (11) is (assuming � = 1)

P2[y(t); 1]
4
= y(t)y

�
(t� 1)

= �
2
1 e

2ja12t e
j(a11�a12) + �

2
2 e

2ja22t e
j(a21�a22)

+2�1�2 e
jf(a12�a22)t

2+(a11�a21+2a22)t+(a21�a22+a10�a20)g| {z }
T1(t)

+2�1�2 e
jf(a22�a12)t

2+(a21�a11+2a12)t+(a11�a12+a20�a10)g| {z }
T2(t)

:

(12)
The FS coe�cient function of P2[y(t); 1] is given by

P2[y;�; 1]

= �
2
1 e

j(a11�a12) �(�� 2a12) + �
2
2 e

j(a21�a22) �(�� 2a22)

+ lim
T!1

1

T

T�1X
t=0

T1(t) e�j�t + lim
T!1

1

T

T�1X
t=0

T2(t) e�j�t: (13)

We refer to the �rst two terms on the r.h.s. of (13) as auto-
peaks because their locations yield the highest order poly-
nomial phase coe�cients a12 and a22. To obtain good es-
timates of a12 and a22 based on the locations of the auto
peaks, it is thus highly desirable that the last two terms on
the r.h.s. of (13), i.e. the FS coe�cients of T1(t) and T2(t),
be negligible as compared to the auto-peaks.

3.1. FS Coe�cient Function of a Single Chirp

For simplicity, let us rewrite T1(t) de�ned in (12) as

T1(t) = 2�1�2 e
j2t

2

e
j1t e

j0 ; (14)

where 2
4
= a12 � a22; 1

4
= a11 � a21 + 2a22; 0

4
= a21 �

a22+a10�a20. Let us denote the FS coe�cient function of

e
j2t

2

by h(�),

h(�)
4
= lim

T!1

1

T

T�1X
t=0

e
j2t

2

e
�j�t

; (15)

and express the third term on the r.h.s. of (13) as

lim
T!1

1

T

T�1X
t=0

T1(t) e�j�t = 2�1�2 e
j0 h(�� 1): (16)

We would like to compare its magnitude with �
2
l , the mag-

nitude of the auto-peaks.
Interestingly, although exp(j2t

2) is aperiodic in contin-
uous time, it is periodic in discrete time whenever 2 is
a rational multiple of �. If we write 2 = 2�N=D with
N;D > 0 co-prime, then D is a period (although it may not
be the smallest period). Consequently, h(�) contains spec-
tral lines. Theorem 1 below establishes a bound on jh(�)j
and is crucial for assessing the e�ect of the cross-terms in
(13).
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Figure 1. FS coe�cient function of ej2t
2

for 2 =
2� � 24=35 and 2 = 0:5.

Theorem 1 Suppose that 2 = 2�N=D where D > 0 and
N are co-prime integers. Then the FS coe�cient function

h(�) of ej2t
2

satis�es

max
�

jh(�)j =
� p

2=D; if D is even,p
1=D; if D is odd.

(17)

Note that the r.h.s of the above does not depend on N .

Our Theorem 3 later on asserts that h(�) of (15) tends
to zero uniformly in � when 2 is an irrational multiple of
�. Although any irrational number can be approximated to
arbitrary precision by rational numbers, the denominators
of those rationals tend to in�nity as the precision increases.
Theorem 1 then predicts that the corresponding h(�) is
negligible in general. The following example illustrates the
di�erence between the two scenarios.

Example 1. Figure 1(a) shows jh(�)j (calculated with
T = 1; 024) as a function of � 2 [��; �) for 2 = 2� � 24=35.
We observe 35 spectral lines, and their magnitudes do not

exceed 1=
p
D = 0:169. In Figure 1(b), we have 2 = 0:5,

which cannot be expressed as 2�N=D for integers D; N .
There are no discernible peaks in Figure 1(b) and jh(�)j
here is much smaller than that in the previous case.
Because line spectra are produced only when 2 is a ra-

tional multiple of �, and almost all real numbers are irra-
tional, we conclude that spectral lines appear in h(�) with
probability zero and h(�) is very small for large T .
Based on the above observations and together with (16),

we infer that the two cross-terms in (13) are negligible and
HAF is virtually additive:

P2[y;�; 1] � �
2
1 e

j(a11�a12) �(�� 2a12)

+�
2
2 e

j(a21�a22) �(�� 2a22): (18)

3.2. Worst Case Scenarios

In [4] Polad and Friedlander proposed a procedure for
tracking multi-component PPS parameters. Those of the
strongest component are �rst identi�ed. The component
is then removed and the estimation process is continued
with the remaining L� 1 components. Relation �1=�2 > 2

was assumed in [4] in order for �21 > 2�1�2 and so to en-
sure that the cross-terms are never more than the strongest
auto peak. With the help of Theorem 1 (and Theorem 3
in Section 4), however, we can relax the above assumption
considerably.
We observe that the contribution from the cross-term in

(16) is no more than 2�1�2max� h(�), i.e.

lim
T!1

�����
1

T

T�1X
t=0

T1(t) e�j�t
����� � 2�1�2 max

�
h(�): (19)
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Figure 2. P̂2[y;�; 1] of a two component chirp.

The r.h.s. tends to zero (Theorem 3) when 2 is an irra-
tional multiple of �, and is nonzero otherwise. The worst
cases are when 2 = 2�N=D with D small, and we shall
examine these cases below.
First, we recognize that with � = 1, the leading chirp

coe�cients must satisfy ja12j < �=2 and ja22j < �=2 in order
to satisfy the HAF-based identi�ability condition jM !aM j <
� (M = 2 here). This implies that j2j = ja12 � a22j <
�, and hence N=D < 1=2. Without loss of generality, we
assume that �1 � �2. The worst case scenarios are identi�ed
as follows:

(c1) D = 4, N = 1 and ja12 � a22j = �=2. The r.h.s.

of (19) is then
p
2 �1�2. In order for the cross-term not to

exceed the strongest auto peak �
2
1, we need �1=�2 >

p
2.

(c2) D = 3, N = 1 and ja12 � a22j = 2�=3. The r.h.s. of

(19) is then 2�1�2=
p
3. In order for the cross-term not to

exceed the strongest auto peak �
2
1, we need �1=�2 >

p
2.

For all other D's, Theorem 1 ensures that the the cross-
term in (19) is never more than the strongest auto-peak.
Hence, we conclude that if ja12 � a22j 6= �=2 or 2�=3, then
the successive estimation algorithm described in [4] can be
implemented for any �1=�2 > 1. Otherwise, one needs to

ensure that �1=�2 >
p
2 or 2=

p
3. This is a much weaker

condition than the one stated in [4].
We further infer from Theorem 1 that if D � 8 is even

and 1 � �1=�2 <

p
D=8, or, if D � 5 is odd and 1 �

�1=�2 <
p
D=2, then the two strongest peaks in P2[y;�; 1]

will always be due to the auto-terms, because the r.h.s. of
(19) will always be smaller than �

2
2 (and hence �21). For a

generic 2 = a12 � a22 to be well approximated by 2�N=D,
D would have to be fairly large, and the above condition
is then easily met. This implies that in general, P2[y;�; 1]
can be regarded as virtually additive, and it is safe to use
the locations of the L largest peaks to estimate al2 for l =
1; 2; : : : ; L.

Example 2. We generated T = 1024 samples of a two-
component PPS y(t) given by (11), where each alm is an
i.i.d. uniform random variables in [0; 1). Figures 2(a) and

2(b) show particular realizations of P̂2[y;�; 1] with ampli-
tudes �1 = �2 = 1 and �1 = 2:5; �2 = 1, respectively. We

observe two distinct peaks in P̂2[y;�; 1], the locations of
which correspond to 2a12 and 2a22, illustrating the virtual

additivity of P̂2[y;�; 1]. This experiment was repeated 100
times, and no cross-terms have ever been observed. Note
that although the dynamic range in Figure 2(b) is large due
to �1 6= �2, the two strongest peaks nevertheless yield the
correct 2a12 and 2a22.
Proceeding arguments assume that the leading chirp co-

e�cients are di�erent. The picture changes when a12 = a22,
because then the two auto-peaks merge to one, and 2 = 0
makes both cross-terms T1(t) and T2(t) behave like harmon-



Table I. Examples of (20)

b2 b3 D dD l.h.s. r.h.s.
1024708 7286213 11142379 8 0.0813 0.1038
1135718 950919 1247601 8 0.0864 0.2155
1545555 279513 5888885 16 0.0880 0.4085

ics. Under the assumption that the instantaneous frequen-
cies of the di�erent components must be di�erent, we infer
that a11 6= a21 when a12 = a22 and T1(t) and T2(t) gener-
ate peaks at 2a12 + (a11 � a21) and 2a12 � (a11 � a21) in
P2[y;�; 1], which are equidistant from the peak at 2a12.

4. MULTI-COMPONENT PPS OF ORDER M

For the general L-component constant amplitude PPS
model of (9), we assume without loss of generality that the
polynomial phase orders satisfy M1 � M2 � : : : � ML.
The HAF of order M1, PM1

[y;�; � ], exhibits peaks at

M1!�
M1�1al;M1

for all l such that al;M1
6= 0, but a large

number of cross-terms are also present. As in Section 3.1,
we shall examine the magnitude of the FS coe�cient func-

tion of c(t) = e
j
P

M

m=2
amtm

in order to make inference
about the contribution of those cross-terms.
As with the case of a chirp, c(t) is periodic in discrete time

t if and only if all am are rational multiples of �. If so the FS
coe�cient function of c(t) contain spectral lines. Unlike the
case of a chirp, for M > 2 there is no general formula for the
largest magnitude of those spectral lines. Nevertheless, we
establish a bound on the largest magnitudes in the following
theorem:

Theorem 2 Consider the polynomial phase signal c(t) =

e
j
P

M

m=2
amtm

and suppose that am = 2�bm=D, where
D; b1; : : : ; bm are relatively prime integers, D > 0. Then

lim
T!1

max
�

�����
1

T

T�1X
t=0

c(t) e
�j�t

����� � min (1; cD=D
1=M

) (20)

where cD = d
log2M

D and dD denotes the number of divisors

of D. Hence the FS coe�cient function of c(t) is uniformly

bounded by min (1; cD=D
1=M ):

Remark: It can be shown that the rate of growth of dD as
D increases is approximately logarithmic or less, depend-
ing on how many factors D has, see Rosen [7]. Therefore,
limD!1 dD=D

" = 0 for any " > 0. As a result, the r.h.s. of
(20) tends to zero as D !1.

We note here that Theorem 2 provides bounds on the FS
coe�cient functions of all Mth-order PPS. Since it includes
the worst case scenarios, these bounds may not be optimal
sometimes. However, the established bound does point out
the qualitative dependence of the magnitude of FS coe�-

cient function on D
�1=M , which tends to zero as D ! 1.

The work by Hua [1], Vinogradov [8] and others also indi-
cates that the exponent �1=M of D on the r.h.s. of (20) is
optimal and cannot be improved. From (20), we infer that
the larger the D and the smaller the dD, the tighter the
bound. For generic am = 2�bm=D such will be the case.
Table 4. gives numerical examples on the use of (20).
In practice, it is unlikely for an arbitrarily chosen am to

be a rational multiple of �, and it is even less likely for all
famg, m = 2; : : : ;M , to be rational multiples of �. The
following theorem show the magnitude of the FS coe�cient
function tends to zero uniformly when the conditions of
Theorem 2 are not met.

Theorem 3 Consider the polynomial phase signal c(t) =

e
j
P

M

m=2
amtm

and suppose that at least one am is an irra-
tional multiple of �. Then

lim
T!1

max
�

�����
1

T

T�1X
t=0

c(t) e
�j�t

����� = 0: (21)

The importance of Theorems 2 and 3 is to guarantee that
except in the pathological cases when all am are rational
multiples of � with a very small common denominator, the
FS coe�cient function of the cross-term c(t) are negligible.
Hence in high-order multi-component PPS setting the HAF
is virtually additive.

5. CONCLUSIONS

Multi-component AM-FM models describe a large class
of nonstationary processes, among which multi-component
polynomial phase signals (PPS) form a particularly impor-
tant subclass. The so-called high-order ambiguity function
(HAF) was originally introduced by Peleg and Porat to es-
timate the parameters of single-component PPS, but has
not been widely used for multi-component problems due to
the appearance of many cross-terms. In this paper, we have
carefully examined the magnitudes of the cross-terms and
shown that they are almost always negligible in comparison
to the peaks due to the original signal components. Thus
HAF can be regarded as virtually additive and be safely
applied to multi-component PPS.
Our simulations show that cross-terms rarely cause false

peaks in the HAF domain. Problems may arise when
the components share the same (highest order) polynomial
phase coe�cients or when the dynamic range of the com-
ponent amplitudes is large. Algorithms using HAF for es-
timation of multi-component PPS is currently under inves-
tigation.
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