
ON THE CROSS-BIORTHOGONAL REPRESENTATION

Shubha Kadambe and Richard S. Orr

Atlantic Aerospace Electronics Corp., 6404 Ivy Lane, Suite 300, Greenbelt, MD 20770

ABSTRACT

A novel cross term deleted Wigner representation can be
obtained by expanding the Wigner Distribution (WD) in
terms of two complementary Gabor coe�cients of the sig-
nal and a translated set of Wigner basis functions. Two
such complementary Gabor coe�cients of a signal can be
obtained by reversing the role of Gabor synthesis window
h(t) and its biorthogonal function b(t). Such a representa-
tion is de�ned here, as Cross-Biorthogonal representation
(XBIO). Details of derivation of this new representation is
provided in this paper. The choice of the synthesis functions
and their corresponding biorthogonal functions with respect
to (i) concentration/resolution capabilities, (ii) redundancy
vs. minimum-dimension tradeo�s, (iii) noise reduction and
(iv) basis set properties of the XBIO representation are also
discussed. Simulation results are provided to substantiate
the theoretical �ndings.

1. INTRODUCTION

It is very well known in the signal processing community
that the inherent bi-linear characteristics of the Wigner
Distribution (WD) introduces artifacts (cross terms) which
complicates the extraction of the required information from
the WD of a multi-component signal. Therefore, several
methods were developed to suppress or �lter the cross
terms. Each technique has its own advantages and dis-
advantages. Recently, in [1, 2], the authors have shown
that the WD can be decomposed into terms that contribute
only to auto and cross WD via Gabor expansions. If the
terms that a�ect the cross-WD are deleted, we get a time-
frequency representation without the cross-WD term. Such
a representation which is devoid of cross-terms is de�ned as
the Cross-term Deleted Wigner Representation (CDWR)
[1]. The XBIO, a new time-frequency representation that
is introduced in this paper, can be free of cross-terms and
is an alternative method to decompose the WD using two
complementary Gabor coe�cients of a signal and a trans-
lated set of Wigner basis functions.

Initially, the concept of cross-biorthogonal was used for the
synthesis problem in [3] based on the observation that the
cross-WD of a window and its biorthogonal function gen-
erate an orthogonal set in time-frequency plane under the
appropriate translations. Further, the basic idea of XBIO
representation originates with the recognition that a Gabor
synthesis window h(t) and its biorthogonal function b(t)

generate two complementary Gabor expansions one using
h(t) as the synthesis window and b(t) as the analysis win-
dow, and the other using b(t) as the synthesis window and
h(t) as the analysis window.

It is known that a signal s(t) can be expanded using the
Gabor coe�cients Gm;n as:

s(t) =
X
m

X
n

Gm;nhm;n(t) (1)

where Gm;n =
R
1

�1

s(t)b?m;n(t)dt and hm;n(t) = h(t �

�m)ej2�n�t: Here � and � are constant time and frequency
sample intervals, respectively, ? is the complex conjugation
operator and bm;n(t) is de�ned similar to hm;n(t). It can be
shown that if Gm;ns are complete bm;ns are also complete
which implies that s(t) can also be expressed as a weighted
sum of translates of b(t). That is,

s(t) =
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p
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q

Ĝp;qbp;q(t) (2)

where Ĝp;q =
R
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s(t)h?p;q(t)dt is the set of biorthogonal

basis expansion coe�cients. From the above two equations,
it can be seen that Gm;ns and Ĝm;ns, the complementary
Gabor coe�cients of s(t) are generated by reversing the
role of h(t) and b(t). It has been shown that these com-
plementary Gabor coe�cients are related through a linear
transformation whose kernel is the ambiguity function of the
window or biorthogonal function. By decomposing the WD
using these complementary Gabor coe�cients, the XBIO
representation (continuous and discrete) can be derived; de-
tails of which are given in the next section.

2. DERIVATION OF THE XBIO

REPRESENTATION

2.1. Continuous case:

The continuous WD of a signal s(t) is de�ned as:
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By substituting s(t) with its complementary Gabor expan-
sions (Eqs. (1) & (2)) in the above equation, the WD can
be decomposed into:

WDs(t; !) =
X
m;n

X
p;q

Gm;nĜp;qWDhm;n;bp;q (t; !) (4)



where WDhm;n;bp;q (t; !) is the cross-WD of widnows h(t)
and b(t), and is a set of basis functions for the expansion of
WDs(t; !). By algebraic manipulations, the above equation
can be reduced to:
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Note that no special relationship between h and b is re-
quired for the above equation to hold. However, we are
particularly interested in the above equation when h and b

are a biorthogonal pair.

From the above equation, it can be seen that it exhibits
both auto and cross-WD terms. The auto-WD terms cor-
respond to the case when m = p and n = q. Therefore, by
retaining only the terms that a�ect auto-WD terms, we get
the cross-term deleted XBIO time-frequency representation
XBs(t; !) of a signal s(t). That is,

XBs(t; !) =
X
m;n

Gm;nĜ
?
m;nWDh;b(t� nT; !�

m

T
) (6)

where T is the sampling rate. Note that if h replaces
b above, then Ĝm;n = Gm;n and the XBIO representation
(the above equation) is equivalent to the CDWR. There-
fore, the CDWR is a special case of the XBIO rep-

resentation.

2.2. Discrete case:

Similarly, the discrete version of the XBIO (DXBIO) repre-
sentation can be obtained by considering the discrete-time,
discrete-frequency de�nition of the WD which for a signal
s(k) is de�ned as [4]:
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where p1 is the period of s(k). Using the complementary
Gabor expansions xm;n and x̂p;q of a discrete signal s(k),
the above equation can be written as:
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where hm;n(k) and bp;q(k) are:

hm;n(k) = h(k �m �Q)e
j 2�
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respectively. Substituting for hm;n(k) and bp;q(k) in Eq.
(8) and after some algebraic simpli�cations, it can be shown
that:

DWDs(�; �) =

X
m;n

X
p;q

xm;nx̂
?

p;q

�DWDh;b

�
� � (m + p) �Q; ��

p1

Q
(n+ q)

�
�e
�

�
2�m �Q

�
�

p1
�

(n+q)
Q

�
�

��(n�q)
Q

�(m + p) �Q�

�
�

p1
�

(n+ q)

Q

�i

(11)

Here, DWDh;b is the cross-DWD of h(k) and b(k). Simi-
lar to the continuous case, the above equation exhibits a mix
of auto and cross-terms. The auto-DWD terms are those
that correspond to m = p and n = q. Hence, by retaining
only the autoterms in the above equation, we get a cross
term deleted DXBIO representation DXBs(�; �) which is
given by:

DXBs(�; �) =
X
m;n

xm;nx̂
?
m;nDWDh;b(� � 2m �Q;�� 2 �Pn)

(12)
In the above set of equations, �Q and �P de�ne the time
and frequency sampling intervals, and m �Q and n �P de�ne
the sampling points of the Gabor expansion in the time-
frequency plane. In addition, P;Q; �Q and �P are positive
integers constrained by: p1 = P �Q = �PQ. The selection
of these integers determine the sampling rate of DXBIO
representation. For example, when P = �P , Q = �Q and
p1 = PQ, the DXBIO representation is said to be critically
sampled. In the following sections, some properties of the
XBIO representations, and selection of synthesis window
and its biorthogonal function are discussed.

3. PROPERTIES

Both continuous and discrete XBIO representations have
some interesting characteristics. These are discussed in the
following sections.

3.1. Property # 1 Completeness:

The WD basis functions (WDh;b(t � nT; ! �
m

T
) and

DWDh;b(� � 2m �Q;� � 2 �Pn)) should satisfy completeness
for synthesizing the signal from its XBIO representation.
The WD basis functions form a complete orthogonal set in
L2(R2) if h and b are complete in L2(R2). This permits a
development of a large number of orthogonal bases for the
time-frequency plane and implies that near-orthogonal sets
can be obtained when b is su�ciently close to h in the least
square sense. In [5], an algorithm is described to design b

which is close to h in least square sense. This procedure is
equivalent to designing b with minimum energy constraint
[6]. When b is designed at the maximum oversampling rate
with minimum energy constraint, it can be shown that it is
a scaled version of h. For the proof refer to [7, 8]. There-
fore, we use this methodology to design b which is close
to h. In Figure 1, we plot h (a Gaussian window) and b

which is designed as described above. From this �gure, it



can be seen that b is indeed a scaled version of h. In ad-
dition, since h and b are biorthogonal to each other they
are complete in L2(R2) [8]. Therefore, using the described
method we can generate the WD basis functions which are
complete in L2(R2). This implies that the signal s(t) can
be resynthesized from its XBIO/DXBIO representation.

3.2. Property # 2 Destructive interference:

From Eqs. (6) and (12), it can be seen that in the com-
putation of the XBIO representation, the cross-WD of the
windows and the complementary Gabor coe�cients are in-
volved. Both cross-WD (WDh;b and DWDh;b), and weights

(fGm;n; Ĝ
?
m;ng and fxm;n; x̂

?
m;ng) are complex valued unlike

in the case of the CDWR. Therefore, it is conceivable that
destructive interference between adjacent expansion terms
is possible. This implies that, this property could be ex-
ploited in detection or noise reduction problems. In Figure
2, (i) the synthetic signal that consists of three modulated
Gaussian signal components with additive white Gaussian
noise of SNR = �6dB and (ii) its CDWR and XBIO repre-
sentations at four di�erent sampling rates are plotted, re-
spectively. From this �gure, it is clear that the three signal
components are better detectable in the XBIO represen-
tation (in particular, at maximum oversampling rate) of
the noisy signal as compared to the CDWR. This indicates
that the destructive interference of the adjacent terms of the
XBIO representation is helping in noise reduction. There-
fore, it should be advantageous to use XBIO TFR for signal
detection when it is embedded in noise as compared to the
CDWR.

3.3. Property # 3 Dimension of the XBIO:

The dimension in other words the number of auto-terms of
the XBIO/DXBIO representation can be controlled by the
choice of h and b pair because:

� a signal will have a certain dimension which is approx-
imately equal to the number of signi�cantly large ex-
pansion coe�cients fGm;ng or fxm;ng when the signal
is expanded using a given window function,

� the same signal will have a di�erent dimension when
the biorthogonal window is used as the basis function
in the expansion of a signal and

� the dimension or the number of auto-terms of the
XBIO/DXBIO is then less than or equal to the mini-

mum dimension of the weights fGm;ng and fĜm;ng or
fxm;ng and fx̂m;ng since any zero term of the weights
cause the XBIO/DXBIO weight at (m;n), i.e. the

product Gm;nĜm;n or xm;nx̂m;n to be zero.

Therefore, by designing b appropriately, we can either get
maximum or minimum dimension XBIO/DXBIO represen-
tation. In the following sections, design details of maximum
and minimum dimension b are provided.

3.3.1. Maximum dimension

We can get highly redundant or maximum dimension
XBIO/DXBIO representation if the maximum dimensions
of b and h are the same. It can be shown that their di-
mensions are the same when b is designed such that it is a
scaled version of h. In section 3.1. it was mentioned that

b is a scaled version of h only when b is designed at max-
imum oversampling rate with minimum norm constraint.
Therefore, maximum dimension XBIO representation can
be obtained by designing b of a given h at maximum over-
sampling rate.

The main advantage of maximum dimension XBIO/DXBIO
representation is that it has the best time-frequency reso-
lution since it can be shown that the cross-WD of h and
b has the best concentration in the time-frequency domain
when the maximum oversampled b is used [7]. In addition,
as observed from Figure 2, the noise e�ect is reduced and
thus signal can be enhanced.

3.3.2. Minimum dimension

Similarly, minimum dimension XBIO/DXBIO represen-
tation can be obtained if the dimension of b is minimized
for a given h or vice versa. The minimum dimension b can
be designed by minimizing the mutual information between
h and b in information theoretic sense. The mutual infor-
mation between h and b, I(b; h) is de�ned as [9]:

I(b; h) = H(b)�H(bjh) (13)

where H is the entropy. Therefore, for a given h, the mu-
tual information can be minimized by minimizing the in-
formation or entropy of b. In oversampled case, this can be
achieved by forcing certain components of b to zero. These
components can be chosen by minimizing the variance Je:

Je =
X
i

(bi � �)2 (14)

where � is the mean of b. This approach was used to design
a minimum dimension b for a given Gaussian window h.
In Figure 1(a) and 1(c), h and b are plotted, respectively.
From these two �gures, it can be seen that b has only three
non-zero components and hence has a dimension of three.

4. SIMULATION

From the discussion in the above section, it is clear that an
expansion based on cross-biorthogonal function may lead
to crossterm deleted representation in which the number
of autoterms maybe smaller than the CDWR. Therefore,
an experiment was conducted to compare the concentra-
tion/resolution capabilities of the minimum, maximum di-
mension XBIO and the CDWR representations by consid-
ering a non-linear chirp signal, s(t) = (1� e�at)sin2�(fc +
f(t))t where f(t) = �f0e

�ct. The parameters a, carrier fre-
quency fc, f0 and c are set to 2:3� 107, 107, 1:5� 106 and
3:0 � 104, respectively. The contour plots of the CDWR,
maximum and minimum dimension XBIO representations
of this non-linear chirp signal are as shown in Figure 3.
From this �gure, it can be seen that the highly redundant
XBIO representation has the best concentration/resolution
since its energy is concentrated along the time-varying in-
stantaneous frequency of the signal whereas the CDWR has
the least resolution/concentration.

5. CONCLUSIONS

We have derived a novel XBIO time-frequency represen-
tation. We have shown that the CDWR is a special case



of the XBIO TFR. Some of the properties of this repre-
sentation are discussed. These properties have lead to two
new design techniques for the biorthogonal analysis window
which are described in this paper. The signal enhancement
and resolution/concentration capabilities of the XBIO and
the CDWR TFRs are compared with simulation examples.
From the experimental results, it can be seen that the highly
redundant XBIO representation has better noise reduction
and resolution/concentration capabilities. This implies that
the XBIO TFR is a potential tool for signal detection and
classi�cation problems.

0 50 100 150 200 250 300
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35
(a) Gabor synthesis window

0 50 100 150 200 250 300
0

0.2

0.4

0.6

0.8

1

1.2

1.4
x 10

−3 (b) Max. oversampled biorthogonal window

0 50 100 150 200 250 300
0

0.5

1

1.5

2

2.5

3

3.5
x 10

−3

time (number of samples)

(c) Minimum dimension biorthogonal window

Figure 1. Gaussian synthesis window and its maximum and
minimum dimension biorthogonal functions
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Figure 2. The noisy synthetic signal with additive white
Gaussian noise (SNR = - 6 dB), and contour plots of its
XBIO and CDWR representations.
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Figure 3. Non-linear chirp signal and contour plots of its
CDWR, highly redundant and minimum dimension XBIO
representations


