
SHIFT AND SCALE INVARIANT DETECTION

Eugene J. Zalubas, Je�rey C. O'Neill, William J. Williams, and Alfred O. Hero III

Department of Electrical Engineering and Computer Science

University of Michigan, Ann Arbor, MI 48109-2122

email: loz,je�o,wjw,hero@eecs.umich.edu

ABSTRACT

Di�erent signal realizations generated from a given

source may not appear the same. Time shifts, fre-

quency shifts, and scales are among the signal varia-

tions commonly encountered. Time-frequency distribu-

tions (TFDs) covariant to time and frequency shifts and

scale changes re
ect these variations in a predictable

manner. Based on such TFDs, representations invari-

ant to these signal distortions are possible. Presented

here are two approaches for discriminating between sig-

nal classes where within class translation and scale vari-

ation occur. The �rst method uses an auto-correlation

followed by a scale transform to achieve the invari-

ances. The second method treats the TFD as a two-

dimensional probability density function and applies a

transformation that removes the mean and variance to

provide the shift and scale invariance. Each method

employs discrimination mechanisms to yield powerful

results.

1. INTRODUCTION

Recognition of speci�c signatures in signals has long

been of interest. Powerful techniques exist for their

detection and classi�cation, but these techniques are

often defeated by variations in the signature. These

variations include scaling and shifting in time and fre-

quency. All time-frequency distributions (TFDs) in

Cohen's class are covariant to time shifts and frequency

shifts [1]. There exists a subset of Cohen's class that

is also covariant to scale changes. Similar to [3], we

will call this class the shift-scale covariant class. Re-

duced interference distributions (RIDs), introduced by

Williams and Jeong [7], are a subset of the shift covari-

ant class. RIDs have a straightforward design proce-

dure and also attenuate troublesome cross terms. Meth-

ods can be designed that transform shift scale covariant
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TFDs into representations that are invariant to shifts

and scales.

De�ne:

(T�x)(t) = x(t� � )

(F�x)(t) = x(t) ej�t

(Dcx)(t) =
1p
c
x(ct)

Given a speci�c signal of interest, x(t), we want to de-

tect the class that includes signals of the form:

(T�F�Dcx)(t)

for all possible values of � , �, and c. Since the above

operators do not commute, we would also include the

signals obtained by permuting the order of the opera-

tors. Using TFDs that are covariant to shifts and scales

(e.g. RIDs), we will provide methods for creating a rep-

resentation that is invariant to shifts and scales. Scal-

ing of a signal causes the time and frequency axes to

scale inversely. Time and frequency shifts in the signal

change its location in the time-frequency plane, but do

not distort it.

We propose two approaches for robust signature

recognition. Both use RIDs for generating represen-

tations invariant to scales, time shifts, and frequency

shifts. In addition, both detection schemes remove in-

formation regarding the location of the signal in the

time-frequency plane and also the scale of the signal.

Thus, the detections schemes use the actual \pattern"

of the time-frequency distribution for discriminating

the two classes of sounds. This scheme is most appro-

priate when the signal classes of interest have a con-

sistent time-frequency structure, but can occur with

varying shifts in time and frequency and also varying

scales.

The �rst approach produces the Scale and Transla-

tion Invariant Representation (STIR) via autocorrela-

tion and the scale transform. Classi�cation is accom-

plished by comparison of projection measures of a test



STIR onto subspaces orthogonal to the class STIRs.

The second approach uses moments to provide invari-

ant representations. Distance measures between test

representations and class representations are used for

classi�cation. The next two sections describe the detec-

tion schemes in detail. Examples using recorded sperm

whale sounds are presented to highlight the abilities of

the techniques.

2. STIR - NOISE SUBSPACE CLASSIFIER

STIR classi�cation has three steps. Autocorrelation of

the 2D representations is used to remove translational

e�ects. 2D scale transformations of the autocorrelation

result is used to remove scaling e�ects. Classi�cation is

accomplished by projecting a test representation onto

a subspace.

2.1. Computation of the 2D autocorrelation

It is well known that autocorrelation removes transla-

tional e�ects in images. The 2D autocorrelation may

be carried out as follows:

A(k1; k2) =
X
n1

X
n2

a(n1; n2)a(n1 � k1; n2 � k2) (1)

where a(n1; n2) is the image. The 0,0 lag point pro-

vides an origin from which the autocorrelation function

scales. Of course for TFDs, the removal of translation

e�ects may be accomplished by taking the magnitude

in the ambiguity domain.

2.2. Direct scale transform

The 2D autocorrelation function of a RID provides in-

variance to time and frequency shift and a stable ori-

gin. A discrete scale transform implementation can

additionally provide scale invariance. The scale trans-

form, introduced by Cohen [2], is a speci�c case of the

Mellin transform with the key property that for signals

of equal energy the magnitude of their scale transforms

are invariant to scaling e�ects. The one dimensional

(1D) scale transform, D(c), of the time domain signal

f(t) may be de�ned as

D(c) =
1p
2�

Z
1

�1

f(ex)e(1=2�jc)xdx (2)

using the substitution t = ex. Using a direct expan-

sion of the scale transform, a discrete approximation is

obtained. Assume the signal is sampled every T units

and remains constant between samples. Splitting the

integral into logarithmic intervals yields

D(c) =
1p
2�

(Z
lnT

�1

f(ex)e(
1

2
�jc)xdx+

Z
ln 2T

ln T

f(ex)e(
1

2
�jc)xdx+ : : :

)

D(c) � 1p
2�

(
f(e�1)

Z
ln T

�1

e(
1

2
�jc)xdx+

f(eln T )

Z
ln 2T

lnT

e(
1

2
�jc)xdx+ : : :

)

D(c) � 1p
2�(1

2
� jc)

1X
k=1

[f(kT � T )� f(kT )] (kT )
1

2
�jc

Since the scale transform is based on exponential

sampling relative to the origin, the entire autocorrela-

tion plane cannot be dealt with at once. By symme-

try, the �rst and fourth quadrants combined provide

complete information about the entire autocorrelation

plane. Thus, 2D scale transform these quadrants sep-

arately. A 2D scale transform is implemented by se-

quentially scale transforming the rows then columns of

a matrix. The magnitude of normalized scale trans-

forms for �rst and fourth quadrants of the autocorre-

lation plane de�ne the STIR image of the original 2D

input.

2.3. Classi�cation of patterns

Our technique for pattern classi�cation uses STIR im-

ages decomposed into an orthonormal set of descrip-

tors, using a concept borrowed from Pisarenko's har-

monic decomposition [5, 8]. The Karhonen-Lo�eve trans-

form is a means of accomplishing this. The singular

value decomposition (SVD) provides equivalent results.

The STIRs of each exemplar in a class are shaped into

a row vector by concatenating rows of the two STIR

matrices. These row vectors are stacked to form a ma-

trix representing the class. The SVD is then applied to

extract essential features of the set of vectors. Provided

that a su�cient number of scale coe�cients are calcu-

lated, singular values of zero will result. Right singular

vectors corresponding to zero singular value de�ne a

subspace orthogonal to the class of STIR vector repre-

sentations.

In classifying a test signal, generate its STIR vector.

Compute for each class the sum of inner product mag-

nitudes of the STIR vector with the orthogonal sub-

space vectors. If the sum is zero, then the test signal



must be a member of the corresponding class. In prac-

tice, one does not obtain a zero sum with the proper

subspace class, but the sum resulting from the proper

class has the smallest magnitude relative to sums from

calculation with other class subspaces.

3. MOMENT METHOD

For this approach, we treat the TFD as a two dimen-

sional probability density function (pdf) where time

and frequency represent a two-dimensional random vari-

able [4]. The expected value of a function of these vari-

ables, f(t; !), will be de�ned as:

E
�
f(t; !)

�
=

ZZ
f(t; !)C(t; !) dt d! (3)

As a �rst step, we calculate the expected value of the

time variable, �t = E
�
t
�
, the expected variable of the

frequency variable, �! = E
�
!
�
, and the spread of the

time variable �2t = E
�
(t � �t)

2
�
. If we normalize the

TFD in the following manner:

~C(t; !) = C
�
(t � �t)=�t; (! � �!)�t

�
(4)

then we obtain a representation that is invariant to

time shifts, frequency shifts, and scale changes.

Given the representation in equation 4, we need a

method for reducing the dimensionality so we can apply

it to the detection problem. We propose to do this

by calculating normalized moments of the probability

density function in equation 4.

mp;q = E
�
tp !q

�
(5)

Theoretically, all of the moments completely describe

the pdf. Here we hope to retain as much information

as possible by using a subset of the moments.

We will use the above to characterize classes of

whale sounds. Suppose we have a set of N whale

sounds that represent the A class. For each of the whale

sounds, we will apply the following steps:

1. compute a shift-scale covariant TFD,

2. remove the location and scale information by ap-

plying the transformation in equation 4, and

3. calculate a subset of the moments de�ned in equa-

tion 5.

For each whale sound in the class, we will have a mo-

ment vector, mi, for i = 1 � � �N . This moment vec-

tor will be invariant to shifts and scales of the signal.

We will treat these N moment vectors as instances of

a jointly Gaussian random vector, M . Since the mo-

ments are computed as an average, it is reasonable to

assume that the random vector, M , will be approxi-

mately jointly Gaussian. From the set of N moment

vectors we will estimate the mean vector, �A, and the

covariance matrix, KA, using standard sample estima-

tors.

Given two di�erent classes of whale sounds, A and

B, that we wish to discriminate, we will estimate �A,

KA, �B , and KB . Given an unknown signal, we will

apply the steps above to compute the moment vector,

m. Under the above assumptions, the following test

(m � �A)
tK�1A (m � �A)�

(m � �B)
tK�1B (m � �B)

A

7
B




chooses the most \likely" answer [6].

4. DISCUSSION

The detection schemes presented above have been ap-

plied to the recognition of sperm whale signatures 1.

Recordings of sperm whale \clicks" from two di�erent

animals are used as data. The goal is to correctly as-

sociate each recorded signature to the animal which

produced it, whale A or whale B,

We only had six recordings from each of two whales.

To increase the number of records and to make correct

classi�cation more challenging, mathematical variation

was added. Time shifts, frequency shifts, scalings, and

noise were applied to the signals. As a result, the �-

nal signal data set consisted of 81 variations of each

of six recordings for each whale. These signals were

divided into test and training sets, each containing 81

variations of three recordings. Figure 1 shows example

signals from the two whales after noise and variation

have been added to the recordings. Obviously, with

the added noise, discrimination between the signals is

di�cult in either the time or frequency domain.

In order to achieve the frequency shift invariance us-

ing TFDs, the analytic signals of the real valued data

sequences were used. Calculating the binomial TFD [7]

and applying the two detection mechanisms yields the

receiver operating characteristics (ROCs) shown in Fig-

ure 2. It appears that the STIR method could pro-

vide better performance as a detector over the moment

method. However, the moment method has a lower

computational complexity.
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Figure 1: Examples of the whale signals with added

noise and shift and scale distortions. Signal for whale

A, x(t), and its Fourier transform magnitude appear

in the top and upper middle graphs. Signal for whale

B, y(t), and its Fourier transform magnitude appear in

the lower middle and bottom graphs.
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Figure 2: Receiver Operating Characteristics for the

whale sounds data using the two di�erent methods.
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