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ABSTRACT

In this paper, we give two algorithms for linear system
blind identi�cation based on the fourth order spectrum (or
trispectrum). The �rst algorithm uses only N of the N3

data of the fourth order spectrum. The second algorithm
uses all the information contained in the fourth order spec-
tra, but gives an optimal solution. This solution needs a
previous phase unwrapping step; we give di�erent solutions
to unwrap the trispectrum phase. Finally, we establish the
link between the well-known kurtosis maximization method
and the optimal solution presented here; they are equivalent
in �rst approximation. It means that we give an analytic
solution to the blind identi�cation problem which is nearly
equivalent to the kurtosis maximization solution.
Keywords : HOS - Fourth Order Statistics - Blind Identi�-
cation.

1. INTRODUCTION

Fourth order statistics of complex signals are among the
possible tools for treating the problem of channel identi�-
cation and equalization in digital communication [1]. Para-
metric methods (in the time domain) have been studied for
several years [2],[1]; it seems that the fourth order methods
in the frequency domain have not been studied in depth. We
know the works of Mendel [1] Dalle Molle and Hinich [3],
Pan and Nikias [4] and Le Roux et al. [5],[6]. Pierce [7],[8]
and Shalvi and Weinstein [9] are among the few who treated
the case of complex signals with applications in the �eld of
radar signals and equalization respectively. Here, we extend
a Fourier transform phase reconstruction algorithm that we
developed in the case of third order spectra [10]. This mul-
tiresolution method does not raise phase unwrapping di�-
culties. If we intend to use optimal techniques [5][6], phase
unwrapping is necessary : the trispectrum phase, being the
sum of four spectrum phases (see eq. 3), takes values in
the interval [�4�; 4�]; but the trispectrum phase is com-
puted as the argument of the complex trispectrum then it
is wrapped in the interval [��; �]. Some algorithms, espe-
cially those involving divisions, require a phase unwrapping
step. Here we give a phase unwrapping method that ex-
tends the work of Marron et al. [11]. Next we give two
other possible phase unwrapping solutions. We apply these
three phase unwrapping techniques to our optimal recon-
struction method.

2. DEFINITIONS

Our developments are based on the fourth order cumu-
lant which never vanishes even under circularity hypothesis
[12][13]. The fourth order cumulant of a complex random
sequence x(t) is given by :
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where X(!) is the Fourier transform of the sequence x(t).
� Remark : We draw the attention of the reader on the
importance of the three planes appearing in (2).
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Figure 1: Identi�cation scheme.

If the analyzed signal is the output of a LTI system
driven by a non-gaussien zero-mean IID complex sequence
x(t) (Fig. 1), the fourth order spectrum phase satis�es:

 
Y
4 (!1; !2; !3) = '

H(!1) + '
H(!2) (3)

�'H(�!3)� '
H(!1 + !2 + !3) + k�,

where  Y4 (!1; !2; !3) is the output trispectrum phase,
'H(!) is the system Fourier transform phase and k = 0 or
1 depending on the input kurtosis sign. However the input
kurtosis sign beeing equal to the output kurtosis sign, the
value of k is known from the output measurements, and (3)
can be written :
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In this paper, we use the fourth order statistics to recon-
struct the transfer function phase only, since its magnitude
can be obtained from the second order statistics.



3. FOURIER PHASE RECONSTRUCTION

FROM THE TRISPECTRUM PHASE

3.1. A MULTIRESOLUTION RECONSTRUC-

TION METHOD

We give an extension of an algorithm developed in the third
order case [10]:

'̂H(0) = '̂H(1) = '̂H(2) = 0

(at the sampling frequency and its multiples)
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Where '̂H(!) is the reconstructed Fourier phase and
 4(!1; !2; !3) is the estimation of the system trispectrum
phase (cf. (4)).

� This algorithm requires no phase unwrapping.

3.2. LEAST SQUARES RECONSTRUCTION

The criterion and the general formula for real signals are
given in [5]. This reconstruction requires a prior phase un-
wrapping (cf. [11]). In the complex case, the optimal fourth
order solution is given by the phase minimizing:
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where  ̂H4 (!1; !2; !3) = '̂H(!1) + '̂H(!2) � '̂H(�!3) �
'̂H(!1 + !2 + !3).
The minimum is obtained when
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where K is an arbitrary constant. However, due to the
divisions in (8), the value of  4(!1; !2; !3) must be known
in the interval [�4�; 4�], but from the measurements, this
value is known in [��;�]. In the next paragraph, we give
di�erent algorithms to obtain the unwrapped phase value
from its wrapped value.

3.2.1. PHASE UNWRAPPING ALGORITHMS

� Marron's bispectrum phase unwrapping algorithm

Marron et al. [11] have shown that it is possible to
deduce all the N2 unwrapped bispectrum phases  3(!1; !2)
from the N � 1 modulo 2� bispectrum phases
 3(1; !), ! = 1; 2; : : : ;N � 1.
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Figure 2: Scheme representing the relationship between four
trispectrum phases. It illustrates eq.(10) when eq.(3) is
satis�ed.

To obtain the unwrapped phases, they use the following
equation:

 3(!1; !2) =  3(!1 � 1; !2 + 1) +  3(1; !2)

�  3(1; !1 � 1). (9)

In the next hereunder, we extend the Marron's algo-
rithm to the fourth order spectrum of complex signals.

� (�) Extension of Marron's algorithm for the fourth or-
der spectrum

The fourth order extension of Marron's formula is rep-
resented in �gure 2. Its expression is :

 4(z + v+ w;x; y) +  4(w; v; z) =

 4(w;x; y) +  4(w+ x+ y; v; z), (10)

for all v;w;x; y; z.

Note that this formula can be generalized to any order.
It is always a four terms identity.
It is possible to deduce all the N3 unwrapped trispectrum
phases from the (N � 1) modulo 2� trispectrum phases
used in the multiresolution algorithm (see eq.5 and 6) us-
ing (10)[14].
The trispectrum phases deduced by this unwrapping proce-
dure is compared to the measured modulo 2� trispectrum
phase and a phase of 2q� is added to the measured phase
so that their di�erence will be less than �.
There are other approaches for performing phase unwrap-
ping. Here are two methods that are also e�cient in prac-
tice.

� (�) Multiresolution used to unwrap the trispectrum
phase
The multiresolution method gives a �rst approximation of
the channel phases '̂H(!). Those values are then used to
compute the trispectrum phases in the interval [�4�; 4�] us-
ing equation (3). Another e�cient solution consists in com-
bining the multiresolution method with the optimal method
as shown in the next paragraph.

� () Multiresolution combined with the optimal method
Such a combination is possible thanks to the iterative struc-
ture of the multiresolution method. The multiresolution
will be combined with the optimal method as follows :



- at step n of the algorithm, the multiresolution method
gives a �rst estimate of
'̂H
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- these values, and those calculated in the previous steps
(at lower resolutions), are used to unwrap the trispectrum
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(4).

- Next, the LS estimation (8) uses these trispectrum

phases to give an improved estimation of '̂H
�
2m+1
2n

�
for

m = 0; 1; :::;2n�1 � 1.

- Finally, these last estimates will be used to initialize
the next step (n+ 1) of the algorithm.

4. IDENTIFICATION AND KURTOSIS

MAXIMIZATION
In this section, we show that the optimal least-squares iden-
ti�cation is very similar to the well known kurtosis maxi-
mization.

4.1. KURTOSIS MAXIMIZATION CRITERION

In this section, we use the scheme used in the equalization
context (see Fig.3).
The criterion was proposed by D. Donoho and later by

x(t)
-1

h(t)
y(t)

z(t)h  (t)

Figure 3: Equalization scheme.

O. Shalvi and E. Weinstein [15] [16] [17] in order to recover

the input sequence x(t). It consists in estimating ĥ�1(t)
through the maximization of jK(z)j under the constraint

E
�
jzj2

	
= E

�
jxj2

	
, where K(z) is the kurtosis of z.

In a �rst step O. Shalvi and E. Weinstein propose to whiten
the output signal so that they are essentially reconstruct-
ing the channel Fourier transform phase just like the recon-
struction algorithms in the frequency domain.

4.2. EXPRESSION OF THE KURTOSIS MAXI-

MIZATION IN THE FREQUENCY DOMAIN

The kurtosis of the output sequence z(t) is given by :
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Since K(z) is a real number, its modulus is given by :
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where k = 1 if K(z)< 0 and k = 0 if K(z) � 0.

� If the output is whitened,
��TZ�� is constant.

� K(z) being a real number, the complex exponentials in
(12) are replaced by their real part.

Then the Fourier phase maximizing the kurtosis of the out-
put is the phase which maximizes :

J =
jK(z)j

jTZ j
= (13)
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� Since the kurtosis sign of z is the kurtosis sign of x,
the value of k is the same as in (3); then we can replace
 Y4 (!1; !2; !3)� k� by  4(!1; !2; !3) (cf. 4). Finally, (13)
becomes :
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4.3. TAYLOR EXPANSION OF THE KURTOSIS

If the trispectrum is factorizable and its phase is accurately
estimated, the di�erence between  Y4 (!1; !2; !3) and

 ̂H4 (!1; !2; !3) will be small and we can expand eq. (14) :
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If we limit the development to the second term, the
maximization of this criterion reduces to the minimization
of the LS criterion obtained in the frequency domain (7).
Under this hypothesis, kurtosis maximization reduces to the
minimization of a quadratic criterion for which we know
the analytic solution (8). However we introduce the phase
unwrapping problem which has a solution if the trispectrum
is factorizable and the trispectrum phase estimate accurate
enough.

5. SIMULATION RESULTS

We have simulated a channel using the 26th order complex
FIR �lter proposed in [18] deduced from experimental data.
The input was a 4-QAM IID signal. Note that the input
kurtosis is negative.
Figure 4 shows the analyzed channel frequency response
modulus. Figure 5 shows the results of the multiresolution
method alone (trispectrum averages on 50000 sequences).
Figure 6 shows the results of the optimal method using the
extension of Marron (�) and the combination () unwrap-
ping methods (trispectrum averages on 10000 sequences).
The phase unwrapping methods � and � give comparable
results while  improves slightly the results. As expected,
the multiresolution algorithm needs a very accurate estima-
tion of the trispectrum to reconstruct an acceptable solu-
tion, consequently it requires a large amount of data. But
the optimal solution is acceptable even if the variance on
the estimated trispectrum is large, provided the trispectrum
phase is correctly unwrapped.
In the other hand, from the simulation results, we can make
the following interesting conclusion : if the phase unwrap-
ping step is correct, the number of samples required to ob-
tain a good quality identi�cation is drastically reduced.
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Figure 4: Fourier transform modulus : jH(!)j.
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multiresolution after 10000 iterations.
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