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ABSTRACT

This paper presents methods for detection and localization
of photon-limited objects in noise. As opposed to the cor-
relation based or Fourier transform based techniques which
exhibit sensitivity to object scaling, we propose a method
based on the continuous wavelet transform with its ability
to reject noise and to localize objects in space and time as
well as in scale. An advantageous twist presented here is
the use of the wavelet transform on the complex envelope
of the signal of interest. This has the advantage of reduc-
ing \rippling" e�ects seen in the transform of the original
waveform. An example of further post-processing on the
wavelet-transformed data is provided.

1. INTRODUCTION

Photon-limited imaging is useful in low radiation level ap-
plications such as: night vision, astronomy, and sonar. The
recording of such objects relies on counting or detecting
photons as opposed to using intensity measurements as is
done when there is su�cient illumination or radiation. Low
radiation level objects (images) are modeled as a collection
of Dirac delta functions,

I(x; y) =

NX
k=1

�(x� xk; y � yk) (1)

where I(x; y) is the computed intensity at coordinates (x; y)
and N is the number of photons in the vicinity. The photon
generation is usually modeled as a Poisson process. Thus,
the intensity is related to the photon arrival rate. The lower
the photon rate, the more jagged the object appears, ren-
dering detection and classi�cation in the presence of obser-
vation noise more di�cult.

2. EXISTING METHODS OF
PHOTON-LIMITED DETECTION

There are several reported techniques for the detection, lo-
calization, and classi�cation of photon-limited objects in
additive noise. They tend to be either correlation-based
[1], [2], or Fourier transform-based [3]. A shortcoming of
such techniques is their inherent sensitivity to object scal-
ing. Furthermore, some of them rely on multiple data snap-
shots for enhancing the SNR. Herein, we propose techniques
based on the continuous wavelet transform (CWT) that
take advantage of its ability to reject noise and to local-
ize objects in space or time, as well as in scale.

3. WAVELET TRANSFORM

The continuous wavelet transform (CWT) of a function f(t)
is de�ned in [6] as

CWTf (a; b) =

Z
�1

1 
�

a;b(t)f(t)dt

=
1p
a
h a;b(t); f(t)i ; (2)

where a 2 R+ and b 2 R, � denotes the complex conjugate,
and  a;b denotes,

 a;b =
1p
a
 

�
t� b

a

�
; (3)

which represents shifted and scaled version of the \mother
wavelet" function  (t).
Thus, the CWT of a one-dimensional function is a two-

dimensional function of the parameters a and b. The param-
eter a is a scaling parameter, small values of a may be as-
sociated with small scales (hence high frequencies). A time
shift is represented by parameter b. In this light, we see the
CWT of a signal provides a description of the signal both in
terms of frequency components and temporal localization.
It is this characteristic we wish to exploit here in the task
of photon-limited imaging. For our purposes, we consider
our original signal to be discrete in nature (i.e. sampled)
and use the DWT, a discretized version of (2),

DWTf (a; b) =
1p
a

D
 

�
t� b

2k

�
; x(k)

E
: (4)

It should be noted that there are limitless functions that
may used as the \elementary function" in (2) or (4). In
many situations, the choice of this \mother wavelet" is of
little consequence. For the examples presented herein, we
choose to use the \Mexican Hat Wavelet" [4] de�ned as,

 =
(1� t2)

2
exp(�t2) (5)

3.1. Modeling a One-Dimensional Photon-Limited
Object

A photon-limited version of a one-dimensional object O(x)
is modeled as a collection of randomly positioned impulses

Op(x) =
X
i

�(x� xi): (6)



On average, the density of the impulses in the neighborhood
of x0 is proportional to O(x0) if we assume photon genera-
tion to be a Poisson process with arrival rate proportional
to object intensity. If P (x) is the photon count in a small
interval �x centered at x then

EfP (x)g / O(x)�x: (7)

A good approximation to a realization of the above process
is obtained by the following:

1. For any x0 draw a random deviate from a uniform dis-
tribution between 0 and 1.

2. Multiply the deviate by O(x0), producing the approx-
imation to Op(x).

3. For a smoother function, that is, a higher photon rate,
multiply the average of several independent uniform
random deviates by O(x0).

3.2. Detecting the Object

The situation of interest here is in detecting and localizing
O(x) when we have a realization of

D(x) = Op(x) + n(x) (8)

where D(x) is the observed process, Op(x) is the photon-
limited object and n(x) is additive noise. A common
method of detection is the counting of photons in an ob-
servation window. This is equivalent to integrating D(x)
within a sliding window. If the count exceeds a threshold
the data within the window is classi�ed as part of the object;
it is treated as background noise otherwise. This essentially
amounts to cross correlating the data with the window and
then applying the threshold. The window size a�ects the
classi�cation accuracy. A window that is too wide would
require a high threshold to suppress false alarms thus re-
ducing the probability of detection as well. The opposite is
true for a narrow window. We propose the use of the wavelet
transform precisely to take advantage of the fact that the
transform o�ers correlation with windows of varying sizes
due to the dilation that is inherent in the transform.

4. USE OF WAVELET TRANSFORM PEAKS
IN OBJECT DETECTION

Figure 1, shows an example signal of interest, a square pulse
of duration 20 and unit amplitude. Figure 2 shows an image
of the magnitude of each element of the DWT(a; b) matrix.
The horizontal axis relates to the pulse position (wavelet
translations), while the vertical axis relates to the pulse
duration (wavelet scaling). The local maxima (peaks) of
DWT are denoted on the image with a black \o" and a
white \+". The smaller subplots show the position and
magnitude of these peaks in both position and scale.
Regarding Figure 2, we see that there are ripples in the

wavelet transform of the pulse as seen by the black/white
bands in the image or the multiple peaks in position and
scale. Such rippling may cause problems with further post-
processing of the wavelet transform.

4.1. Use of Complex Envelope

A proposed remedy introduced herein is to use the complex

envelope of O(x), denoted by eO(x) and de�ned as,

eO(x) = O(x) + j bO(x) (9)

where bO(x) is the Hilbert transform of O(x). Figure 3 de-

picts the wavelet transform of eO(x). Note how the rippling
has been reduced greatly. Such reduction provides bene�ts
for the detection methods explored herein.

0 50 100 150 200 250 300

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

 

Figure 1. Example Object O(x)
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Figure 2. Wavelet Transform of O(x)

5. DATA EXAMPLE

Sample results are shown here for data consisting of two
photon-limited objects separated in time and of di�ering
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Figure 3. Wavelet Transform of eO(x)



size. Figure 4 shows the original objects O(x), photon-
limited objects Op(x), and the observed data D(x) corre-
sponding to the photon-limited objects in additive noise
with � = 0:08. The approximate SNR (de�ned as the ratio
of power of Op to power of n(x) is {3.9 dB.
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Figure 4. Objects O(x), Photon-limited Objects
OP (x), and Observed Data D(x)

Before looking at the e�ects of photon-limiting and ob-
servation noise we depict in Figure 5 the peaks of the
wavelet transform when each of the single objects consid-
ered separately. That is, it plots the location of the peaks of
DWT(Oi(x)) where Oi(x) is the signal due to the ith object
alone. Here, O1(x) is a pulse of width 15 starting at 55, and
O2(x) is a pulse of width 40 starting at 161. Notice that
the peaks placement in both time and scale agree with the
actual object in Figure 4a. This would be the output of a
\perfect" detector.
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Figure 5. Peaks of DWT of Singleton Objects

Figure 6 depicts the wavelet transform and its associated

peaks for the two objects considered together (i.e. from Fig-
ure 4a). Notice that the peaks' placement in time agree with
the actual objects, but the scale term has been perturbed
from the actual peak due to \interference" between the two
objects. Such displacement may be small when the objects
are well separated in time (relative to their scale). More
troubling, however, is the appearance of multiple peaks (the
six such peaks in the positional plots are due to only two
objects). How is one to distinguish peaks due to actual
objects and these peaks introduced by the DWT and the
object interaction?
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Figure 6. DWT of O(x)

Figure 7 demonstrates the e�ectiveness of the use of the
complex envelope in reducing/removing such \false peaks".
Here we have only two positional/scale peaks corresponding
to the actual objects position/scale (albeit biased peaks).
Finally, we present the results of such processing of the

photon-limited objects in measurement noise. Figure 8
shows the wavelet transform and associated peaks of D(x).
As in the noiseless case above, there exist multiple peaks in
both position and scale axes making object detection and
feature determination di�cult.
In Figure 9. the wavelet transform of eO(x) is computed

and displayed with its associated peaks. The lack of mul-
tiple peaks makes scale and position identi�cation of the
object clearer.
Again, the use of the complex envelope (this time with

photon limited and observation noise) demonstrates the
e�ectiveness of removing the false peaks and maintaining
those peaks actually due to objects as seen in
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Figure 7. DWT of eO(x)
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Figure 8. DWT of D(x)
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Figure 9. DWT of eD(x)
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