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ABSTRACT

This paper, introduces a new �lter bank structure called
the perfect reconstruction circular convolution (PRCC) �l-
ter bank. These �lter banks satisfy the perfect reconstruc-
tion properties, namely, the paraunitary properties in the
discrete frequency domain. We further show how the PRCC
analysis and synthesis �lter banks are completely imple-
mented in this domain and give a simple and a 
exible
method for the design of these �lters. Finally, we use this
�lter bank structure for a frequency sampled implementa-
tion of the discrete wavelet transform based on orthogonal
bandlimited scaling functions and wavelets.

1 INTRODUCTION

In this paper we present a new multirate �lter bank struc-
ture which we call perfect reconstruction circular convolu-
tion (PRCC) �lter bank. We further develop simple and

exible methods for designing these �lters to speci�cation.
The formulation of this new �lter bank structure has been

motivated in part by the search for e�cient methods to im-
plement the discrete wavelet transform (DWT) based on
orthogonal bandlimited scaling functions and wavelets. A
considerable amount of research has been done in the area
of wavelets that are compactly supported in time. However,
there are situations where a bandlimited scaling function or
wavelet could be more appropriate. Relevant examples can
be found in a variety of �elds such as communication, sig-
nal analysis and pattern recognition [2, 5, 7]. We provide
another example of such a situation in section 3. Bandlim-
ited wavelets and scaling functions have several interesting
properties. For example, they provide an easy solution set
to the problem of designing orthonormal multiresolution de-
composition, generating wavelets that are matches to arbi-
trarily speci�ed signals [5, 4]. Using such wavelets Samar
et. al. [7] have shown superior convergence of multiresolu-
tion representations for bandlimited wavelets as compared
to wavelets with compact time support for EEG data.
An impediment to more widespread use of bandlimited

wavelets has been their in�nite time support that makes
the corresponding �lters of in�nite impulse response (IIR)
type, usually without a �nite order di�erence equation. To
get around this, an appropriately truncated version of the
time response can be used. This results in loss of the ban-
dlimitedness property. For the DWT, it also means a loss
of invertibility and perfect reconstruction. Here, we intro-
duce a �lter bank structure that provides a framework for a
frequency sampled implementation of bandlimited scaling
functions and wavelets while guaranteeing perfect recon-
struction at the same time.
The paper is organized as follows. Section 2 describes

the Meyer scaling function. Section 3 illustrates a sce-
nario where the Meyer scaling function or its generaliza-
tion could be an optimal choice. Section 4 describes the

PRCC framework and presents a simple and 
exible method
for the design of these �lters. Section 5 explains how the
PRCC framework could be used for the frequency sampled
implementation of bandlimited wavelet transform. Section
6 explains the symmetric extension implementation of the
PRCC �lter banks to reduce edge e�ects. Finally, section 7
presents the conclusion.

2 THE MEYER SCALING FUNCTION

As mentioned above, in this paper, we will show how the
PRCC �lter bank structure can be used for a frequency
sampled implementation of the DWT based on orthogonal
scaling functions and wavelets. It has been shown that a
generalized version of the Meyer class of scaling functions
are the only bandlimited functions which de�ne a orthogo-
nal multiresolution analysis [4]. In other words, all orthog-
onal bandlimited scaling functions and wavelets belong to
a generalized version of the Meyer class.
The Meyer scaling function, �(t) satis�es the following

properties [4]:

1. The spectrum of �(t), �(!) is bandlimited to j ! j=
4�=3.

2. j �(!) j= 1 for j ! j� 2�=3.

3. j �(� � !) j2 + j �(� + !) j2= 1 for j ! j� �=3.

4. The Poisson sum,
X
k

j �(w+ 2�k) j2= 1. This is

equivalent to h�(t); �(t � n)i = �(n) In other words,
the Meyer scaling function is orthogonal to its integer
translates.

3 MOTIVATION

This section illustrates a situation where the Meyer scaling
function could naturally arise in the context of sampling a
bandlimited function. Consider the system shown in �gure
1. This corresponds to an approximation sampling proce-
dure. Here, a(t) is an anti-aliasing �lter. This is followed
by a unit-sampler and b(t) is the reconstruction �lter. We
now ask the following questions: Given a signal f(t), does
there exist an optimal pair a(t), b(t), which minimizes the
mean square error between the original signal f(t) and its
approximation fa(t)? If yes, what are the properties that
this pair satis�es?
Now, from Figure 1,

g(n) =

Z
f(�)a(n� �)d� (1)

This corresponds to unit sampling of g(t). Using (1) we
have

fa(t) =
X
n

g(n)b(t � n) (2)



Figure 1. Approximation sampling block diagram.

Minimizing the mean square error between f(t) and fa(t)
with respect to b(t) gives

B(!) =
F (!)X

k

F (! + 2�k)A(! + 2�k)
(3)

where B(!) is the Fourier transform of b(t) and A(!) and
F (!) are Fourier transforms of a(t) and f(t) respectively.
Equation (3) thus represents the optimal reconstruction �l-
ter given f(t) and a(t). Obviously, there are certain condi-
tions that both A(!) and F (!) must satisfy to ensure the
existence of B(!). For example, for B(!) to exist, we re-
quire the denominator of (3) to be non-zero at all !. With
this condition, the Poisson sumX

n

A(! + 2�n)B(! + 2�n) = 1 (4)

In words, a(�t) is orthogonal to the non-zero interger trans-
lates of b(t). Now, taking the Fourier transform of (2) and
using (3) we have

Fa(!) = F (!) (5)

This result implies that it is possible to design B(!) to
exactly reconstruct F (!) from its �ltered samples provided
the denominator in (3) does not go to zero for all !. The
above equations could have interesting consequences which
need to be investigated further. For now, we use these equa-
tions to illustrate two speci�c cases which serve as our mo-
tivation.
Let F (!) be bandlimited to j ! j= �. Then, (3) gives

A(!)B(!) = 1 j ! j� �

= 0 otherwise (6)

This suggests that A(!) and B(!) are spectral factors of the
ideal brickwall �lter and corresponds to a generalization of
the classical sampling theorem. For example, if A(!) = 1
then B(!) corresponds to the ideal brickwall �lter. That
is, a(t) = �(t) and b(t) = sin(�t)=�t, the ideal interpolation
�lter.
Now consider the case when F (!) and hence F (!)A(!)

are bandlimited to j ! j= 4�=3. Sampling this signal at a
rate of 1 corresponds to undersampling the signal and leads
to aliasing. From 3 we have

A(!)B(!) = 1 j ! j� 2�=3 (7)

and

A(� � �)B(�� �) + A
�(�+ �)B�(� + �) = 1 (8)

where � < �=3. If we impose an additional constraint that
F (!) be real, we have

A(� � �)B(�� �) + A(�+ �)B(�+ �) = 1 (9)

From section 2, (9) along with (7) and (4) imply that A(!)
and B(!) are real spectral factors of j �(!) j2, the power
spectrum of the Meyer scaling function. This discussion il-
lustrates an example where the Meyer type of scaling func-
tion could be used to derive an optimal interpolator. The
idea of using scaling functions as antialiasing and recon-
struction �lters in an approximation sampling system oc-
curs in [1]. With this motivation, we introduce the idea of
prcc �lter banks in the next section.

4 PRCC FILTER BANKS

Before we describe the PRCC �lter banks, we interpret the
operations of downsampling and upsampling in terms of
the discrete Fourier transform (DFT). Also, the input to
the PRCC �lter bank is a �nite signal x(n) of length N .
Note that, to represent the DFT of a sequence we use the

notations X(e|2�k=N) and X(k) interchangeably.

4.1 Downsampling

The input to the downsampler is a sequence x(n) of N sam-
ples. The output of the downsampler, denoted by y(n), is
given by[8]

y(n) = x(Mn) (10)

where the sequence y(n) has N=M samples. It is assumed
that N is an integer multiple of M .

The DFT of the output Y (e|2�k=(N=M)) is given by [3]

Y (e|2�k=(N=M)) =
1

M

M�1X
l=0

X(e|2�(k�
N

M
l)=N ) (11)

k = 0; 1; : : : ; N
M

� 1. Note that Y (k) is N=M periodic. In
other words, we take the IDFT of the �rst N=M points of
the N point summation on the right hand side of (11) to get
the downsampled signal. Thus, from (11), each coe�cient
of the DFT of the downsampled sequence Y (k) is a sum
of M coe�cients of the DFT of the input sequence X(k),
spaced N=M samples apart. For example, when M = 2,
the steps involved are the following:

� Take the DFT of x(n)

� Add the DFT of x(n) and its N/2 rotated version. This
makes use of the N periodicity of X(k).

� Divide the resulting sequence by 2.

� Take the IDFT of the �rst N/2 samples.

This creates the N=2 point dowsampled sequence y(n).

4.2 Upsampling

An L-fold upsampler takes an input sequence x(n) and pro-
duces an output sequence de�ned as follows [8]:

y(n) =
n

x(n=L) n = multiple of L
0 otherwise (12)

The output sequence has NL samples. The DFT of y(n) in
terms of the DFT of x(n) is [3]

Y (e|2�k=(NL)) = X(e|2�k=N); k = 0; 1; : : : ;NL� 1 (13)

In words, the NL length DFT of the upsampled sequence

Y (e|2�k=(NL)) is nothing but a concatenation of L DFTs of
x(n).



Figure 2. Perfect reconstruction circular convolu-
tion analysis and synthesis �lter banks.

4.3 The Basic Procedure

PRCC �lter banks are �lter banks designed and imple-
mented completely in the discrete frequency domain. In
other words, these �lter banks satisfy the conditions for
perfect reconstruction over a discrete set of frequencies and
the operations of downsampling, upsampling and �ltering
are carried out entirely in the discrete frequency domain.
The basic procedure for their implementation can be un-
derstood by referring to the Figure 2. Here, we �rst take
the DFT of the N length input signal x(n). Next, we mul-
tiply this DFT, X(k), pointwise with a sequence H0(k),
which is the DFT of an N length sequence h0(n). This
amounts to circularly convolving sequences, h0(n) and x(n).
The resultant sequence is then downsampled by two as ex-
plained in subsection 4.1. The procedure is repeated for the
lower branch with H1(k), the DFT of h1(n). In this man-
ner, we decompose the input sequence into two sequences
of length N=2 whose DFTs we denote by V0(k) and V1(k)
respectively. To recombine the two sequences, we upsam-
ple the sequences V0(k) and V1(k) as explained in subsec-
tion 4.2. This gives us two sequences U0(k) and U1(k) of
length N . These are then multiplied pointwise with F0(k)
and F1(k) which are the DFTs of N length sequences f0(n)
and f1(n) respectively. They are the synthesis �lters cor-
responding to the analysis �lters h0(n) and h1(n) respec-
tively. The output of the synthesis �lter bank is thus given
by XR(k) = F0(k)U0(k) + F1(k)U1(k). The reconstructed
signal is then the inverse DFT (IDFT) of XR(k), namely,
xR(n).

Note that, the PRCC �lter bank is a framework based in
the discrete frequency and is di�erent from the work pro-
posed by several authors before on fast implementation of
FIR �lter banks based on the FFT [6]. We now present the
conditions for perfect reconstruction for the PRCC banks
in the next subsection.

4.4 Conditions for perfect reconstruction

Since the input sequence is of length N it follows from the
previous subsection that the �lters also have a support of
N samples. Furthermore, we assume that all sequences and
�lters are real valued. The conditions for perfect reconstruc-
tion in this case are obtained in a manner similar to that
described in [8]. They are cyclic counterparts of the corre-
sponding linear relationships and are presented below. The

power complementarity condition which H0(e
|2�k=N ) needs

to satisfy is

j H0(e
|2�k=N ) j2 + j H0(�e

|2�k=N ) j2= 2 (14)

k = 0; 1; : : : ;N � 1. For perfect reconstruction we choose

H1(e
|2�k=N ) = �e�|2�(N�1)k=NH0(�e

�|2�k=N ) (15)

This gives

F0(e
|2�k=N ) = e

�|2�(N�1)k=N
H0(e

�|2�k=N ) (16)

F1(e
|2�k=N ) = e

�|2�(N�1)k=N
H1(e

�|2�k=N ) (17)

Equations (14), (15), (16) and (17) ensure that the �lters
satisfy the equivalent of the paraunitary conditions in this
domain [8, 3] and hence satisfy the cyclic orthogonality re-
lationships given by

N�1X
n=0

hi(n)hj((n+2`) mod N) = �(i; j)�(2` mod N;0) (18)

where ` 2 Z and i; j = 0; 1. Note that these are cyclic
equivalents of similar relationships satis�ed by orthogonal
or paraunitary �lter banks [8].

4.5 Filter Design

To obtain the �lters H1(e
|2�k=N ), F0(e

|2�k=N ) and

F1(e
|2�k=N ) we �rst need to design the �lter H0(e

|2�k=N ).

For this we require the half band �lter H(e|2�k=N ) de�ned
as

H(e|2�k=N ) = H0(e
|2�k=N )H0(e

�|2�k=N ) (19)

k = 0; 1; : : : ;N � 1. Note that H(e|2�k=N ) is a zero phase
�lter. Furthermore from (14), it is clear that it has the
characteristics of a half band �lter [8, 3]. Thus, design of

H1(e
|2�k=N ) or H(k) is equivalent to assigning a value to

each DFT coe�cient as follows. Assuming 0 � H(k) � 1,
for some H(k)

1. H(N � k) = H(k)

2. H(N=2� k) = 1�H(k)

3. H(N=2 + k) = H(N=2� k)

H0(k) can now be designed by taking into account the fact
that

H(e|2�k=N ) =j H0(e
|2�k=N ) j2 (20)

Therefore

j H0(e
|2�k=N

) j= H(e
|2�k=N

)
1=2

(21)

Given that in general, H0(e
|2�k=N ) has the form

H0(e
|2�k=N ) =j H0(e

|2�k=N ) j e|�(k) (22)

we can now add the phase term �(t). Since we require that
h0(n) be real, �(k) is antisymmetric about N=2. The �lters
H1(k), F0(k) and F1(k) can now be derived using the rela-
tions (15), (16) and (17).
Example. N = 8.
Let H(0) = 0:75. Then H(4) = 0:25. Let H(1) = 0:37.
Then H(7) = 0:37 and H(3) = H(5) = 0:63. Finally,
H(2) = 1�H(2) = H(6) = 0:5. Thus,
H(k) = f0:75; 0:37; 0:5; 0:63; 0:25; 0:63; 0:5; 0:37g, and hence
h(n) = f0:5; 0:0166; 0:0; 0:1084; 0:0; 0:1084; 0:0; 0:0166g
Note that the non-zero even indexed points of h(n) have
value 0.
From (21) this gives us
j H0(k) j= f0:866; 0:6082; 0:7071; 0:7937; 0:5; 0:7937;
0:7071; 0:6082g



Figure 3. Low pass and high pass �lter impulse re-
sponses obtained by frequency sampling the power
spectrum of the Meyer scaling function.

Let us choose
�(k) = f0; 1:1168; 0:2302;�2:6746; 0:0; 2:6746;�0:2302;
�1:1168g
This completes the design of of H0(k). The �lters H1(k),
F0(k) and F1(k) can now be determined. Note the 
exibil-
ity and ease of design that this method o�ers for designing
�lters to speci�cation.

5 FREQUENCY SAMPLED
IMPLEMENTATION OF THE MEYER
SCALING FUNCTION AND WAVELET

From Section 2 we observe that the power spectrum of the
Meyer scaling function j �(!) j2, satis�es the conditions of
being an half band �lter. It follows that if it is properly
sampled then the half band properties will be retained over
the discrete set of samples thus obtained. To determine the
rate at which it needs to be sampled, it is important to note
that the function needs to be sampled symmetrically about
the angular frequency of � units. This means, if the required
�lter size is N samples, where N is assumed even, then the
samples should be �! = 4�=N units apart in frequency. As
explained in subsection 4.5, the square root of these samples
gives the samples of the low pass �lter which can now be
used in the PRCC framework. The shape of the low pass
and the high pass �lters thus obtained are shown in �gure
3.

6 SYMMETRIC EXTENSION

Because of circular convolution inherent in the PRCC
framework, a multiresolution representation of a signal that
di�ers considerably at its ends will su�er from distortion at
its edges. In order to minimize this distortion, we symmetri-
cally extend the block of the signal. This is done by re
ect-
ing the signal about the (N � 1)th sample and discarding
the last sample. This gives a signal length of 2N � 2. Note
that the �lters used in this case are also of length 2N � 2.
This type of extension considerably reduces edge e�ects as
shown in �gure 4. In addition, the length of the signal sub-
jected to decomposition at each level is always even. This
allows us to decompose a signal down to a larger number of
levels. However, note that this improvement is achieved at
the expense of greater computational complexity.

7 CONCLUSION

In this paper, we introduced the idea of PRCC �lter banks
and demonstrated how it could be used for an invertible
frequency sampled implementation of bandlimited DWT.
Our work is di�erent from work proposed by several authors
on fast implementation of FIR �lter banks in terms of the
FFT algorithm [6]. It is more than an implementation.
It is a novel framework for perfect reconstruction based in
discrete frequency that can be applied to problems such

(a)

(b) (c)

Figure 4. Reconstructed low pass component after
3 levels of decomposition. (a) Original signal, (b)
PRCC �lter banks, (c) PRCC �lter bank with signal
symmetrically extended.

as the frequency sampled implementation of bandlimited
wavelet transforms.
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