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ABSTRACT

In this paper we consider solutions to the non-stationary
Wiener �ltering problem using the evolutionary spectral
theory. Two cases of interest result from the uncorrelation
between the desired signal and the noise. One constrains
the support of the generating kernels of the signals and the
other imposes orthogonality on their innovation processes.
The latter condition is more general and our solution coin-
cides with the one presented previously by Abdrabbo and
Priestley. For the �rst case, we develop a new solution that
depends directly on the Wold-Cramer models of the desired
and noisy processes. Implementation is achieved in both
cases by estimating the kernels for the Wold-Cramer rep-
resentations from the spectra using the evolutionary maxi-
mum entropy spectral estimation. An example illustrating
the �ltering is given.

1. INTRODUCTION

The non{stationary Wiener �ltering problem [1, 2] consists
in obtaining a causal, linear and time-varying estimator for
a desired signal x(n) embedded in noise �(n). This can
be done by minimizing a mean square error between the
desired signal and its estimate. Data are the present and
past values of the observed signal

y(n) = x(n) + �(n): (1)

In this paper we will consider the solution of the Wiener
�ltering problem using the evolutionary spectral theory [1].
Other methods [3] have also been proposed to solve this
problem.
It will be shown that using the Wold-Cramer representa-

tion [4] of the signals involved, and the orthogonality princi-
ple, the above non{stationary Wiener �ltering problem can
be solved. Two cases of interest result from the uncorrela-
tion between x(n) and �(n) which can be obtained by either
constraining the support of the kernels that generate x(n)
and �(n), or by imposing the orthogonality of their innova-
tion processes. The latter condition is more general and our
solution coincides with that of Abdrabbo and Priestley [5].
The �rst case is analogous to the stationary case when the
Wiener �lter is a band{pass �lter with a frequency band-
width coinciding with that of the spectrum of the desired
signal. Although conceptually similar, our solution provides
an LTV �lter capable of separating the desired signal from
the noise.

Implementation of the solutions requires estimation of
the kernels for the Wold{Cramer representations of x(n)
and y(n) from their spectra. Such estimation is possible by
means of the evolutionary maximum entropy [6].

2. NON{STATIONARY WIENER FILTERING

Consider the observed process in equation (1), and as-
sume fx(n)g and f�(n)g are uncorrelated, zero{mean non{
stationary processes with evolutionary spectral densities
Sx(n;!) and S�(n; !). We are interested in �nding an esti-
mator of x(n+m) (for some m � 0) of the form,

bx(n+m) =

1X
u=0

b(n; u)y(n� u) (2)

and such that it minimizes the mean{square error (MSE)

"n(m) = Ejx(n+m)� bx(n+m)j2: (3)

Remarks

(1) As in the stationary case, when m > 0 the above prob-
lem is prediction and when m = 0 it is �ltering.
(2) The Wold{Cramer representations [4] for x(n) and �(n)
are:

x(n) =

Z �

��

Hx(n;!)e
j!n

dZx(!)

�(n) =

Z �

��

H�(n;!)e
j!n

dZ�(!)

which can be viewed as the outputs of LTV systems with
innovation processes of the form

e(n) =

Z �

��

e
j!n

dZ(!) (4)

where Z(!) is an orthogonal increment process. H(n;!) is
the generalized transfer function of a linear time{varying
(LTV) system de�ned as,

H(n;!) =

1X
m=0

h(n;m)e�j!m: (5)

(3) For x(n) and �(n) to be uncorrelated we need that

E[x(n)��(n)] =

Z �

��

Z �

��

Hx(n;!1)H
�

�(n;!2)e
j(!1�!2)n

E[dZx(!1)dZ
�

� (!2)] (6)



be equal to zero. This can be attained assuming
that Zx(!) and Z�(!) are mutually orthogonal, i.e.,
E[dZx(!1)dZ

�

�(!2)] = 0 for all !1 and !2. On the other
hand, if Zx(!) = Z�(!) = Z(!) and Z(!) is an orthogonal
increment process we have that equation (6) becomes

E[x(n)��(n)] =

Z �

��

Hx(n;!)H
�

� (n;!)d! (7)

and uncorrelation then requires that the above integral be
equal to zero. A condition which is satis�ed, for instance,
when the spectra Sx(n;!) and S�(n;!) do not overlap.
(4) If Zx(!) and Z�(!) are mutually uncorrelated, we then
have

E[dZ�x(!1)dZy(!2)] =
Hx(n;!1)

Hy(n;!1)
d!1; (8)

as can be easily veri�ed from E[x(n)y�(n)] = E[jx(n)j2].

3. MINIMIZATION OF MSE

The minimization of "n(m) can be done using the orthogo-
nality principle, according to which bx(n + m) is the pro-
jection of x(n + m) onto a plane spanned by the data
fy(k); k � ng. Thus the estimation error is orthogonal to
the data or to a linear combination of it, bx(n+m), i.e.,

E[x(n+m)� bx(n+m)]bx�(n+m) = 0: (9)

Replacing the Wold-Cramer representation of y(n � u) in
equation (2) we get that

bx(n+m) =

1X
u=0

b(n; u)

Z �

��

Hy(n� u;!)ej!(n�u)dZy(!)

=

Z �

��

G(n;!)ej!ndZy(!); (10)

where

G(n;!) =

1X
u=0

b(n; u)Hy(n� u;!)e�j!u

=

1X
v=0

vX
u=0

b(n; u)hy(n� u; v � u)e�j!v (11)

where we have replaced Hy(n�u;!) and used the fact that
hy(n � u; v � u) = 0; v � u < 0, due to causality. Using
equations (8) and (10) we �rst have that

E[x(n +m)bx�(n+m)] =

Z �

��

Sx(n+m;!)

H�

y (n+m;!)
e
j!m

G
�(n;!)d! (12)

and then that

E[bx(n +m)bx�(n+m)] =

Z �

��

jG(n;!)j2 d!: (13)

Equation (9) becomes

Z �

��

�
Sx(n+m;!)

H�

y (n+m;!)
e
j!m �G(n;!)

�
G
�(n;!)d! = 0: (14)

Remarks

If the uncorrelation of x(n) and �(n) is due to equation (7)
being zero, while Zx(!) = Z�(!) = Z(!), we have that

E[x(n+m)bx�(n+m)] =

Z �

��

Hx(n+m;!)e
j!m

G
�(n;!)d! (15)

and equation (13) still holds so that equation (9) becomes

Z �

��

�
Hx(n+m;!)ej!m �G(n;!)

�
G
�(n;!)d! = 0: (16)

3.1. Normal Equations

Suppose then that

Sx(n+m;!)

H�

y (n+m;!)
e
j!m = F

(1)(n; !) + F
(2)(n;!) (17)

where F (1)(n; !) is a backward and F (2)(n;!) is a forward
polynomial in ej! with time{varying coe�cients. Equation
(14) can then be expressed as

Z �

��

F
(2)(n;!)G�(n;!)d! +

Z �

��

�
F
(1)(n;!)�G(n;!)

�
G
�(n;!)d! = 0: (18)

The �rst integral can be shown to be zero and the second
can be made zero by letting

G(n;!) = F
(1)(n;!): (19)

Letting F (1)(n;!) be of the form

F
(1)(n;!) =

1X
v=0

l(n+m;v +m)e�j!v (20)

then from equation (19) we obtain the �nal expression for
the normal equations of the non-stationary Wiener �lter,

vX
u=0

b(n; u)hy(n� u; v � u) = l(n+m;v +m); v � 0 (21)

which coincide with the solution obtained by Abdrabbo and
Priestley in [5].
Remarks

(1) In a similar manner, if the uncorrelation of x(n) and
�(n) is due to equation (7) being zero, we can write

Hx(n+m;!)e
j!m

= eF (1)
(n;!) + eF (2)

(n;!) (22)

and our minimization condition can easily be shown to be,

G(n; !) = eF (1)(n;!) (23)

where

eF (1)(n;!) =

1X
v=0

hx(n+m;v+m)e�j!v (24)



We then get the following normal equations for this case:

vX
u=0

b(n; u)hy(n� u; v � u) = hx(n+m;v+m); v � 0: (25)

(2) The minimum mean square error can easily be shown
to be

�
min
n (m) =

Z �

��

Sx(n+m;!)S�(n+m;!)

Sy(n+m;!)
d!

+

Z �

��

jF (2)(n; !)j2d! (26)

for the general case with normal equations (21). For the
case with normal equations (25) we get

e�min
n (m) =

Z �

��

jeF (2)(n;!)j2d!: (27)

3.2. Implementation

To implement equation (21) or (25) we need to obtain esti-
mates of the kernels Hx(n;!) and Hy(n;!) from the given
spectrum Sx(n;!) and Sy(n;!). According to (5) we can
then obtain estimates for hx(n; u) and hy(n; u) to use di-

rectly in (25). For equation (21), the estimate bHy(n;!)
is combined with Sx(n;!) as in (17) to obtain for each n

its separation into causal and anticausal components. Es-

timates bHx(n;!) and bHy(n;!) can be obtained from the
evolutionary maximum entropy spectral estimation [6].
The evolutionary maximum entropy spectral estimation

consists in maximizing the entropy

Z �

��

ln S(n; !)d! (28)

for every n, under the conditions that S(n; !) > 0; 8n,
and that the Fourier coe�cients of S(n; !), ff(n;�)g, are
matched for 0 � � � Pn. This becomes the classical maxi-
mum entropy problem for each n, yielding

bH(n;!) =

p
�(n)

A(n;!)
(29)

where,

A(n;!) = [1 +

PX
k=1

a(n; k)e�j!k]: (30)

The fa(n; k)g coe�cients and �(n) can be obtained from
the Levinson's algorithm

PnX
k=0

a(n; k)f(n;k � �) = �f(n;�) 0 � � � Pn (31)

Thus, given Sx(n; !) and Sy(n;!) we �nd the correspond-
ing Fourier coe�cients ffx(n;�); fy(n;�)g and obtain for

each n bHx(n;!) and bHy(n;!).

4. EXAMPLE

We present a �ltering example (m = 0) using the new nor-
mal equations in (25), and we assume that the spectra of
x(n) and �(n) overlap in only a small set of time{frequency
points. As a measure of performance, we use the following
SNR improvement index,

SNR = 10 log10

P
n
j�(n)j2P

n
jx(n)� bx(n)j2 : (32)

Our noisy observation signal y(n) consists of a desired sinu-
soidal frequency modulated signal x(n) corrupted by sta-
tionary white noise �(n) (0 dB SNR). The evolutionary
spectrum of y(n) is shown in Fig. 1. The evolutionary
spectra of the desired and recovered signals are shown in
Figs. 2 and 3, respectively. The method used to estimate
the spectra was the evolutionary maximum entropy [6]. The
SNR improvement achieved in this case is of 3:8 dB. Figure
4 displays the Wiener �lter's frequency response showing
the adaptation along the FM sinusoidal chirp.

5. CONCLUSIONS

We have shown that the non-stationary Wiener �lter can
be formulated and solved using the evolutionary spectral
theory. Although less general, a case of special interest is
when the uncorrelation between the desired and the noise
signal is due to a special condition on the corresponding
Wold{Cramer kernels. Its solution is an LTV �lter capable
of separating the desired signal and the noise. If x(n) and
�(n) are stationary, the solutions given here coincide with
the ones in that case [1, 2].
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