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ABSTRACT

In this paper we propose an original algorithm for the
Bayesian joint estimation and detection of shot noise pro-
cesses. The solution we propose relies on Markov chain
Monte Carlo methods and provides the a posteriori prob-
ability density of the unknown parameters conditionally to
the observations. The solution we propose provides many
degrees of freedom for the inclusion of any a priori know-
ledge.

1. INTRODUCTION

Shot noise processes are very important in many �elds of
physics and applied physics, since they model a surprisingly
large amount of phenomenons [5], for which part of the
information is characterized by the localization of events
in a continuum. Achieving the detection and the estim-
ation of such processes may not be easy due to observa-
tion noise and overlapping. What we propose in this pa-
per is a Bayesian solution to this problem using powerful
stochastic algorithms, which allow to jointly solve the de-
tection/estimation problem, the Markov chain Monte Carlo
(MCMC). Our procedure provides an estimation of the a
posteriori probability density of all the parameters condi-
tionally to the observations. Until recently the detection,
that is the determination of the number of events, could not
be simply treated using a classical MCMC [1], since they
did not allow for dimension change in the set of parameters.
Recently, the revolutionary paper [4] has provided a general
framework to treat this problem, allowing the di�erent di-
mensions to cooperate and share information.

2. MODELIZATION/NOTATIONS/GOAL

The observed continuous time process can be written in the
following way,

y (t) =

K(L)X
k=1

h (t� �k;�k) + n (t)

for t 2 [0; L], where K (L) is the (random) number of events
which occured during the observation time, with arrival
times �1!K(L) (�1<�2 < : : : < �K(L)) and other charac-
teristic random parameters �1!K(L) of the response of the
shot-noise, h (:; :). n (t) is the observation noise, whose
parameter vector is �. Here and in the whole paper we

use the following useful notation X1!N , fX1; : : : ;XNg.
The statistics of �1!K(L), which we model as a generalized
Poisson process, are provided by the intensity of the pro-
cess, � (:;�), which may depend on both time and past of

the process. � is the set of the possibly unknown paramet-
ers of the intensity.
In practice the process is sampled at frequency �s = 1/ Ts

and we observe for n = 1; : : : ;N :

yn ,

K(L)X
k=1

h (nTs � �k;�k) + n (nTs)

The aim of the paper is the estimation of the following
probability density:

� (K (L) ;� ;�;�;�/ y1!N ) (1)

with � =�1!K(L) and � = �1!K(L). This density probab-
ility gathers all the information concerning the unknown
parameters provided by the observations and the, possibly
non informative, prior on the parameters.

3. SOLUTION USING MCMC

The estimation of (1) requires the estimation of untractable
high-dimensional integrals. To circumvent this problem we
use a Markov chain Monte Carlo algorithm, which consists
in building a Markov chain whose equilibrium density is
(1). The algorithm we propose is a hybrid MCMC since
it consists in combining several Metropolis-Hastings-Green
(MHG) steps whose principle is brie
y recalled below.

3.1. The MHG move

Suppose one wants to sample from � (dX) where X may
change of nature or size (� (dX) is a probability distribu-
tion, not a density � (X)!).

1. Initialize the chain with X0 and set k = 1

2. Propose X� from q
�
Xk�1; :

�
3. Evaluate � =

�(dX�)q(X�;dXk�1)
�(dXk�1)q(Xk�1 ;dX�)

4. Xk = X� with probability minf1; �g, else Xk = Xk�1

5. k  k+ 1, go to 2.

In the case when there is no movement between spaces of
di�erent dimensions the probabilities are replaced by their
densities, and this is just a classical Metropolis-Hastings
(MH) step. When not the case, that is for example when
one jumps from space C1 to space C2, the proposal densities
corresponding to q (:; :) do not take the same form depend-
ing on the starting space. Furthermore, those moves can
not be arbitrary so as to achieve convergence to the re-
quired density, and must be de�ned by pairs. A typical
way to perform a move between spaces will be as follows:



optionally draw a random vector Ui (i corresponds to the
starting space), which will generally achieve the dimension
matching between spaces, and propose X�k = gi (Xk�1;Ui),

where g1 (:; :) = g�12 (:; :) is an invertible deterministic trans-
formation. The choice between those two moves is made
randomly with probability bk.
In what follows, we note MHG1 (�; q) a step of this al-

gorithm or a combination of such steps which update the
components of the parameter one after the other, leading
to a so called "MH one at a time". Suppose for example
that one wants to sample from � (X1!n) then proceed as
follows:

1. Initialize the chain with X0
1!n and set k = 1

2. For i = 1; : : : ; n

(a) Propose X�i from q
�
Xk

1!i�1X
k�1
i!n

; :
�

(b) Evaluate � =
�(dXk1!i�1dX

�

i
dX

k�1

i+1!n
)

�(Xk1!i�1
X
k�1

i!n
)

�

q(Xk1!i�1X
�

i
X
k�1

i+1!n
;dX

k�1

i
;:)

q(Xk1!i�1
X
k�1

i!n
;dX

�

i
;:)

(c) Xk

i = X�i with probability min f1; �g, else Xk

i =

Xk�1
i

3. k  k+ 1, go to 2.

3.2. The hybrid sampler

Then the whole algorithm, the hybrid sampler, can be writ-
ten as follows:

1. Initialize K0 (L) ;� 0;�0;�0;�0 and k = 1.

2. Choose with probability bk among the two following
movements (add or delete an impulse):

(a) MHG1 (� (K (L) ;� ; �;�;�/ y1!N ) ; qb)

(b) MHG1 (� (K (L) ;� ; �;�;�/ y1!N ) ; qd)

3. MHG1
�
�
�
�k1!Kk(L)

.
�k
1!Kk(L)

�
; q�

�

4. MHG1
�
�
�
�k1!Kk(L)

.
�k1!Kk(L)

�
; q�

�
5. MHG1

�
�
�
�/�

�
; q�

�
6. MHG1

�
�
�
�/�

�
; q�

�
7. k  k+ 1 and go to 2.

where X , fK (L) ;� ;�;�;�;y1!Ng n fXg at the cur-
rent step of the algorithm. This algorithm converges to the
required density under mild conditions [6] we do not detail
here.

4. APPLICATION

We have treated the following application:
� (kTs) = :025 exp (� cos (2�:1k)), h (t� �i; �i; ai; bi; �i) =

It��ie
��i(t��i) [ai cos (2��i (t� �i)) + bi sin (2��i (t� �i))]

and the noise is white Gaussian nk � N (0; �n). In the
application �n = :5.

4.1. Prior and instrumental density

The priors we have chosen are as follows: [ai; bi]
T
�

N (�ab; �ab), �i � U[0;:5] (the (ai; bi; �i)i=1;:::;K(L) are iid)

and �n / 1/ �n which is a conjuguate non-informative
prior. In what follows we do not identify the �1!K(L)

we suppose it set to 25. If they were unknown one would
take for example exp(��i) � U[0;1]. In order to estimate
� (t;�), we propose to model this intensity by a piece-
wise constant periodic function, with an unknown num-
ber P (T ) of intervals I1!P (T ) characterized by the posi-
tions of their middles �1!P (T ) (�1 < �2 < : : : < �P (T )),
modeled as a homogeneous Poisson process with intensity

�� and their log-levels �1!P (T ). Thus � (t;�) =
P

P (T )
k=1

IIk (tmod T ) exp (�k) (we suppose here that T is known).
We borrow the idea of [2] for the prior of the intensity, that
is �1!P (T )

�
�1!P (T ) � N

�
�
�
;��

�
with ��which penal-

izes high jumps between neighbour large steps: it provides
smoothness to the solution (see 4.4. and [2] for more de-
tails). The relative simplicity and the generality of this
approach have motivated our choice.
The instrumental

densities are qab (a; b) / �
�
a; b/ ai; bi

�
�ab (a; b), q� (�) /P

N�

k=1 �
�
� (k)/ � (k)

�
I[�k��� ;�k+�� ] (�), that is we provide

as proposal density in the last case an approximation of the
conditional densities of these parameters by a mixture of
uniform laws weighted by some discrete values of the real
conditional densities. This method provides in practice a
good mixing of the Markov chain [3], and preserves the "M-
CMC spirit", circumventing any cumbersome maximization
necessary in other proposed methods. In our case � (k) =

:5 k�1
N=2 (k = 1; : : : ;N=2) which allows the use of a classical

FFT. When one wants to estimate �1!K(L) then one can

propose q� (�) /
P

N�

k=1 �
�
� (k)/� (k)

�
I[�k���;�k+�� ] (�).

The �rst density can be evaluated directly in our case.

We note ��1
i

=
P
N

k=1
HiH

T

i

�2
n

, �
i
=�i

P
N

k=1Hiyk with

HT

i = [ h (0Ts � �i) : : : h ((n� 1) Ts � �i) ]. Then

with S�1
i

= ��1
i

+ ��10 and mi = Si
�
��10 �0 +��1

i
�
i

�
,

qab (ai; bi) /

exp

 
�

1
2

��
ai
bi

�
�mi

�
T

S�1
i

��
ai
bi

�
�mi

�!
. Obvi-

ously this provides a "Gibbs like" step, since in that later
case the acceptance rate is 1. Due to the choice on the
prior of �n one can choose q (�n/ �n) such that ��n �

IG

�
1
2 ;

1
2N

P
N

i=1

�
yi �

P
K(L)
k=1 h (iTs � �k;�k)

�2�
which is

also a "Gibbs like" step. We propose a random walk for the
update of the �1!K(L) that is �

�
i � N

�
�k�1
i

; ��
�
. In this

last case the variance is chosen quite small, 0:01.

4.2. "Birth-Death" move

We provide here more details on the propositions of the
dimension change. One chooses with probability bk (we
have taken bk = :5) between the following moves:

� "birth move" is done in the following manner:

1. Draw �p+1 �
�(:;�)

R
L

0
�(u;�)du

2. Draw �p+1 � U[0;:5] (:)

3. Draw (ap+1; bp+1)
T
� �

�
ap+1; bp+1/ap+1; bp+1

�



Thus, qb (ap+1; bp+1; �p+1; �p+1) = bk
�(�p+1 ;�)
R
L

0
�(u;�)du

�

2I[0;:5] (�p+1)� �
�
ap+1; bp+1/ ap+1; bp+1

�
(The last density

can be evaluated directly and easily from qab (ai; bi)).

� "death move", which is the reverse move, is as follows:

1. Draw a point among the current p+ 1 points.

2. Suppress it from the current estimation.

Thus qd (p + 1) = (1� bk)� 1/ (p+ 1)

4.3. Non informative prior

The choice of the prior is very important in our case. In-
deed when there is no dimension change, one can choose
�ab=0; �

�1
ab
! 0 which provides non informative prior on

the amplitudes. Nevertheless this is not easily done when
there are dimension changes since such prior provide in-
formation on the dimension, thus leading to arbitrary model
choice. This lead us to add the following constraint: we

have set the following ratio
(�p+1
ab

)
p+1

(�p
ab
)p

:5 to 1:0 (�kab corres-

ponds to dimension k and :5 corresponds to the probability
of the frequency) which cancels the in
uence of the prior
on the Bayes factors, that is on the choice of the dimen-
sion. Then one can take the limit above which removes in-
formation of the prior within a dimension. The ratio of the
prior on the amplitudes and the frequency for a birth is thus
1/ 4�. Of course other prior could be proposed, (depending
on knowledge about the problem) providing another penal-
ization of the likelihood and thus another Bayesian model
selection rule.
Thus �birth = Likelihood Ratio� � (�p+1;�)� 1/ 4� �

qd (p+ 1)/ qb (ap+1; bp+1; �p+1; �p+1). Of course �death =
1/�birth.

4.4. The intensity

Here we provide some elements on the way the intensity
is estimated. For more details the reader is invited to
refer to [2]. [��](k;k) = �2

�k+1��k�1
2 and [��](k;k+1) =

��2�
�k+1��k

2 (we do not detail the obvious cases of the
�rst and last steps) where � is near to 1 so as to cancel
the e�ect of �

�
(�

�
= �3 is our choice), and � controls

the smoothness of the intensity (� = :5 is our choice).
The addition of a move is made in the same spirit as
for an impulse, but with constraints: for the birth of a
new interval between �k and �k+1, the new intensity is

�new = �new��k
�k+1��k

�k +
�k+1��new
�k+1��k

�k+1 + ", where " is a ran-

dom variable, drawn from an instrumental density (that is
almost free, see [2]). The death move is made with the
reverse transformation. In our application �� = 50.

5. RESULTS

The process we have generated has the following original
parameters:

i 1 2 3 4 5 6
� .020 .172 .219 .376 .726 1.164
a -1.16 -4.58 -.73 -1.76 -1.76 -.63
b -1.22 .86 4.48 1.74 1.89 -3.15
� .37 .12 .44 .12 .14 .16

The �gures we present are the following:

� The observation and the original process.

� The estimation of p (K (L)/ y1!N ).

� The superimposed estimations of p (�i/ y1!N ;K (L))
for K (L) = 4; 5; 6 and i = 1; : : : ; (L).

� The restoration of the process for K (L) = 6 with the
marginal MAP values (read on the graphs).

� The estimation of p (P (L)/ y1!N )

� The estimation of the intensity with P (L) = 6 with
the marginal MAP values (read on the graph).

� We do not present results on the noise, since it is always
one of the easiest parameter to identify.

Those results are interesting, since they re
ect the un-
certainty of a decision in the presence of noise: small im-
pulses and noise can be mistaken, and overlapping can cause
\identi�cation like" problems. The �rst impulse seems to
be ignored, and another pulse is added between pulse 2 and
3.

6. CONCLUSION

We propose in this paper a Bayesian solution to the prob-
lem of joint detection/estimation of shot-noise process using
MCMC. Those algorithms allow the estimation of the a pos-
teriori probability density of the parameters conditionally
to the observations, which concentrates all the probabilistic
information concerning those parameters. Results are sat-
isfactory and the method provides many degrees of freedom
for regularization, thus allowing the natural inclusion of any
prior knowledge. Furthermore this algorithm requires only
to run a single Markov chain which makes the best use of
the common information of the di�erent models, which is
usually impossible using other methods.
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Figure 1. Observation (dotted lines) - Original
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Figure 2. Estimations of p (K (L)/ y1!N )
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Figure 3. Estimations of the p (�i/ y1!N ;K (L) = 4)
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Figure 4. Estimation of the p (�i/ y1!N ;K (L) = 5)
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Figure 5. Estimations of the p (�i/ y1!N ;K (L) = 6)
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Figure 6. Restoration of the process for K (L) = 6
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Figure 7. p (P (L)/ y1!N )
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Figure 8. Restoration of the intensity for P (L) = 6


