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ABSTRACT

Periodogram is an important tool to reveal hidden peri-
odicities in a given time series but does not tell whether
the resulting spectral lines are associated with constant or
random amplitude harmonics. Applications dealing with
random amplitude models include Doppler spread targets
and detection in the presence of fading. We propose to es-
timate the variance of the harmonic amplitude and then
make the decision based on whether the variance can be
regarded as zero in a statistical sense. This is a viable ap-
proach because any constant has variance zero whereas any
real random process has a positive variance. A rigorous sta-
tistical test is formulated and illustrated with simulations.

1. INTRODUCTION

Detection of hidden periodicities embedded in a random
process has been a concern over one hundred years. Schus-
ter in 1894 devised the periodogram as a means of searching
for hidden periodicities. It has had much success in many
areas ranging from seasonal and economic time series anal-
ysis, seismology, geophysics, spectroscopy, and communica-
tions to sonar and radar signal processing (see e.g., [1], [2],
[4], [6], [8] and references therein).
If the periodogram of a process shows peaks at �!0, we

are led to believe that a cosine, cos(!0t+�0), of some form is
present in the data. Discrete-time processes are considered
in this paper and we shall discuss two possibilities:

x(t) = A cos(!0t+ �0) + v(t); (1)

and
x(t) = s(t) cos(!0t+ �0) + v(t): (2)

In (2), multiplicative noise (random amplitude) s(t) and
additive noise v(t) are assumed to be real, stationary, mix-
ing, and mutually independent. The mixing condition [3,
p. 8] ensures that the cumulants of s(t) and v(t) are ab-
solutely summable and hence the corresponding (higher-
order) spectra are �nite. The kth-order cumulant of s(t)
at lags (�1; �2; : : : ; �k�1) is de�ned as cks(�1; �2; : : : ; �k�1)
= cumfs(t); s(t + �1); : : : ; s(t + �k�1)g, and similarly for
v(t). Performance analysis results of this paper require that
!0 6= 0 mod (�) which are usually met in practice. The
phase �0 is assumed to be deterministic here because we
only consider single record detection and estimation. Note
that the constant amplitude harmonic model (1) can be
regarded as a special case of (2) with s(t) � A. The ob-
jective of this paper is to devise statics to test the follow-
ing hypotheses: HP0 : s(t) constant = A, vs. HP1 :
s(t) random.
Random amplitude harmonics such as (2) show up in a

variety of applications. In radar processing, when a non-
point target is fast maneuvering or scintillating, the result-
ing harmonic (due to Doppler shift) carries a random am-
plitude [9]. In underwater acoustical applications, when the

medium is dispersive or 
uctuating, the sonar return also
experiences the random amplitude e�ect [6]. The model in
(2) is also appropriate for Doppler weather radar/lidar re-
turns, where s(t) is due to the randomness of the scatterers
(hydro-meteors or areasol particles). Due to carrier modu-
lation, (2) appears with timing and carrier synchronization
of communications signals as well.
It is important to determine the correct underlying model

at least for the following reasons: 1) s(t) random or not re-
veals partial information about the source (target) such as
scattering and fading [7]; 2) The Cram�er-Rao bounds on the
parameter estimates are di�erent for the two di�erent mod-
els [10]; 3) The corresponding maximum likelihood (ML)
estimates are also di�erent.
Main contributions of this paper are: (i) methods of esti-

mating the meanms and variance �
2

s of s(t) and closed-form
variance expressions of these estimates; (ii) formulation of a

rigorous statistical test to determine the zeroness of the b�2s
estimate. Based on the test result, we then declare whether
random s(t) or constant s(t) = A is present in the data.
The variance expressions derived in this paper can also be
used to predict the reliability of these estimates.

2. PERIODOGRAM ANALYSIS ?

The raw periodogram of the discrete-time x(t) is de�ned as

I2x(�) =

��PT�1

t=0
x(t) e�j�t

��2
T

=
jXT (�)j2

T
; (3)

where XT (�) is the DFT of the data. If x(t) is zero-mean
stationary, then it is well known that I2x(�) is an asymp-
totically unbiased but inconsistent estimator of the power
spectral density (PSD) of x(t) (see e.g., [3]).
Now suppose that the s(t) in (2) has non-zero mean.

Then both (1) and (2) are cyclostationary and have non-
zero and periodically time-varying mean. Previous results
on periodograms of zero-mean and stationary processes do
not apply. When ms := E[s(t)] 6= 0, we can show that as
long as s(t) and v(t) have absolutely summable covariance
functions (or equivalently, their power spectra S2s(!) and
S2v(!) are �nite), then for T large, the expected value of
I2x(�) of (2) has

EI2x(�) � T

�
m2

s

4
�(�+ !0) +

m2

s

4
�(�� !0) +m2

v�(�)

�
:

Therefore when ms 6= 0, second-order information is \lost"
in the periodogram. Since (1) can be regarded as a special
case of (2) with s(t) � A, we have for model (1),

EI2x(�) � T

�
A2

4
�(�+ !0) +

A2

4
�(�� !0) +m2

v�(�)

�
:



Therefore, if the amplitude A in (1) is the same as the mean
ms in (2), the two processes will have almost identical raw
periodograms and thus are indistinguishable.
Since �2s > 0 for s(t) real and random and �2s = 0 for s(t)

constant, our approach to di�erentiating the two models is

to estimate �2s and then check on the zeroness of b�2s .
3. ESTIMATION OF �2s

Our goal is to estimate �2s = m2s �m2

s. The mean ms =
E[s(t)] will be retrieved from the cyclic mean of x(t), and

the mean square m2s = E[s2(t)] will be estimated from the
cyclic mean square of x(t).

3.1. Cyclic mean { the estimation of ms

A quantity that is closely related to the periodogram is
the so-called cyclic mean. If x(t) is cyclostationary, then its
time-varying mean, denoted asm1x(t), is an almost periodic
function of t. Hence its FS coe�cient, termed the cyclic
mean,

C1x(�) = lim
T!1

1

T

T�1X
t=0

m1x(t) e
�j�t; (4)

exhibits peaks at some �. It is straightforward to show that
the cyclic mean of (2) is

C1x(�) =
ms

2
ej�0 �(��!0)+ms

2
e�j�0 �(�+!0)+mv �(�):

The cyclic mean of (1) can be obtained simply by replacing
ms by A.
The following cyclic mean estimator can be shown to be

asymptotically unbiased and m.s.s. consistent [5]:

bC1x(�) =
1

T

T�1X
t=0

x(t) e�j�t: (5)

We recognize that (5) is nothing but the normalized (by
data length T ) DFT of the data and can be computed us-
ing the FFT algorithm. Its amplitude is related to the pe-

riodogram through I2x(�) = T jbC1x(�)j2.
Estimates of !0, �0, and ms are constructed based on

C1x(�) as follows:

b!0 = arg max
�>0

��� bC1x(�)

��� ; (6)

b�0 = arg [ bC1x(b!0)]; (7)

bms = 2 Re
h
e�jb�0 bC1x(b!0)i = 2

T

T�1X
t=0

x(t) cos(b!0t+ b�0):
(8)

In [11], we have shown that when the SNR is moderate

to high (which requires a combination of good m2

s=�
2

s and

m2

s=�
2

v ratios), then the estimators in (6)-(8) will be close
to their true values with the following large sample variance
[11]:

var(b!0) =
1

T 3

�
24S2v(!0)

m2
s

+
6S2s(2!0)

m2
s

�
; (9)

var(b�0) =
1

T

�
8S2v(!0)

m2
s

+
2S2s(2!0)

m2
s

�
; (10)

var(bms) =
1

T

h
S2s(0) +

1

2
S2s(2!0) + 2S2v(!0)

i
:(11)

We emphasize that neither the parameter estimation algo-
rithm nor the variance expressions depend on the distribu-
tions of s(t) and v(t).
Under the same SNR assumption, we have also shown in

[11] that (8) is asymptotically equivalent to the following:

bms =
2

T

T�1X
t=0

x(t) cos(!0t+ �0); (12)

which removes the �nite-sample dependence of (8) onb!0 and b�0 and makes large sample performance analysis
tractable.

3.2. Cyclic mean square { the estimation of m2s

Now let us consider the time-varying mean square of x(t),

m2x(t) = E[x2(t)] = m2s cos
2(!0t+ �0)

+m2v + 2msmv cos(!0t+ �0): (13)

Since m2x(t) is a periodic function of t, we consider its FS
coe�cients, which we term the cyclic mean square of x(t),

M2x(�) = lim
T!1

1

T

T�1X
t=0

m2x(t) e
�j�t =

�
m2v +

m2s

2

�
�(�)

+msmv e
j�0�(�� !0) +msmv e

�j�0�(�+ !0)

+
m2s

4
ej2�0�(�� 2!0) +

m2s

4
e�j2�0�(�+ 2!0):(14)

Consistent sample estimate of M2x(�) is given by [5]

bM2x(�) =
1

T

T�1X
t=0

x2(t) e�j�t; (15)

and hence m2s can be estimated via

bm2s = arg max
� > b!0 4

��� bM2x(�)

��� : (16)

Mimicking the steps used in [11], we can show that (16)
can be approximated by

bm2s =
4

T

T�1X
t=0

x2(t) cos(2!0t+ 2�0); (17)

and its variance analysis is discussed next.
When ms = mv = 0, the variance expression of thebm2s = b�2s estimate was derived in [11]. The variance ex-

pression of bm2s for the general ms 6= 0, mv 6= 0 case is
presented here. Detailed derivation can be found in [12].
De�ne

h1(� ) = c4s(0; �; �) + 2c22s(� ); (18)

h2(� ) = c4v(0; �; � ) + 2c22v(� ); (19)

h3(� ) = 4c2s(� )c2v(�); (20)

h4(� ) = c3s(�; �) + c3s(0; �) = c3s(0;�� ) + c3s(0; �); (21)

h5(� ) = c3v(�; � ) + c3v(0; �) = c3v(0;��) + c3v(0; �); (22)

Hi(�) =

1X
�=�1

hi(� ) cos(�� ) =

1X
�=�1

hi(� ) exp(�j��):

The large sample variance of bm2s can be shown to be [12]

var(bm2s) =
1

T

h
H1(0) + 2H1(2!0) +

1

2
H1(4!0)



+ 8H2(2!0) + 2H3(!0) + 2H3(3!0)]

+
2ms

T

h
H4(0) + 2H4(2!0) +

1

2
H4(4!0)

i
+

16mv

T
H5(2!0) +

4m2

s

T
[2S2v(!0) + 2S2v(3!0)]

+
4m2

s

T

h
S2s(0) + 2S2s(2!0) +

1

2
S2s(4!0)

i
+

8m2

v

T
[4S2v(2!0) + S2s(!0) + S2s(3!0)] : (23)

Once bms and bm2s are obtained, we estimate the variance
of s(t) via b�2s = bm2s � bm2

s: (24)

4. VARIANCE OF b�2s
From (24) we see that in order to derive the variance ex-

pression of b�2s , we need to know the variance of bm2

s and its
cross covariance with bm2s.
In [12], we show that for T large, the variance of bm2

s is

var(bm2

s) = 4m2

s var(bms)

=
4m2

s

T

h
2S2v(!0) +

1

2
S2s(2!0) + S2s(0)

i
; (25)

and the covariance between bm2

s and bm2s is

cov(bm2s; bm2

s) =
ms

T
[H4(0) +H4(2!0)]

+
4m2

s

T
[S2s(0) + 2S2v(!0) + S2s(2!0)] : (26)

Summarizing (23), (25), and (26), we �nd the large sample

variance expression of b�2s :
var( b�2s) = var(bm2s) + var(bm2

s)� 2cov(bm2s; bm2

s)

=
1

T

h
H1(0) + 2H1(2!0) +

1

2
H1(4!0)

i
+
1

T
[8H2(2!0) + 2H3(!0) + 2H3(3!0)]

+
2ms

T

h
H4(2!0) +

1

2
H4(4!0)

i
+

16mv

T
H5(2!0)

+
2m2

s

T
[4S2v(3!0) + S2s(2!0) + S2s(4!0)]

+
8m2

v

T
[4S2v(2!0) + S2s(!0) + S2s(3!0)] : (27)

When s(t) and v(t) are white Gaussian, (27) is simpli�ed:

var( b�2s) = 1

T

�
7�4s + 16�4v + 16�2s�

2

v

�
+
m2

s

T

�
8�2v + 4�

2

s

�
+
m2

v

T

�
32�2v + 16�

2

s

�
: (28)

Comments on (27):

1. No assumptions on the distributions of s(t) and v(t)
are made.

2. (27) depends on speci�c 1st through 4th order statistics
of s(t) and v(t) evaluated at appropriate frequencies.

3. The variance expression (27) is not a function of �0.
4. Although we refer to (27) as a large sample result, our

simulations show that it may be valid even for T as
small as 16 [12].

5. STATISTICAL TEST FOR b�2s
It can be shown that when T is large,

p
T ( b�2s��2s) is asymp-

totically Gaussian distributed [5] with mean zero and vari-
ance given by T times the r.h.s. of (27). We postulate the
following two hypotheses:

HP0 : s(t) constant = A vs: HP1 : s(t) random

Under HP0, �2s = 0, and hence
p
T b�2s has mean zero

and variance Tvar( b�2s). As a result, T ( b�2s)2=Tvar( b�2s) =

( b�2s)2=var( b�2s) is �2(1) distributed. The probability of false
alarms is de�ned as

PFA = Pr

(
( b�2s)2
var( b�2s) > � j HP0

)
: (29)

For a given PFA, we �rst determine a threshold T =

�var( b�2s), and upon receiving a b�2s estimate, we compare

( b�2s)2 with T , accept HP0 if ( b�2s)2 is below T and reject
HP0 if otherwise.
Under HP0, s(t) � A; hence, except for the mean ms =

A 6= 0, all cumulants of s(t) are zero: h1(� ) = h3(�) =
h4(� ) = 0. It follows from (27) that

var( b�2s) =
8m2

s

T
S2v(3!0) +

32m2

v

T
S2v(2!0)

+
8

T
H2(2!0) +

16mv

T
H5(2!0) (30)

under HP0. If v(t) is symmetrically distributed, then
H5(�) = 0. If v(t) is Gaussian, then H5(�) = 0 and

H2(�) =
P

�
2c22v(�) cos(��).

In practice, we need to estimate var( b�2s) (and hence T )
from the same data. Operating under HP0, we �rst re-

move bms cos(b!0t + b�0) from x(t). The residue is regarded
as an approximation of v(t) (recall that ms = A here) and
many available (poly)spectral estimation procedures can
be followed to estimate S2v(2!0), S2v(3!0), H2(2!0), and
H4(2!0). The mean of v(t) can be estimated by simply
taking the running average of the data,

bmv =
1

T

T�1X
t=0

x(t) : (31)

When v(t) is white Gaussian, the variance expression (30)
further simpli�es to

HP0 : var( b�2s) = 16�4v
T

+
8�2v(m

2

s + 4m2

v)

T
: (32)

In order to estimate the above expression, we �rst obtainbms and bmv as in (12) and (31), and then calculate

HP0 : b�2v = 1

T

T�1X
t=0

x
2
(t)� bm2

s

2
� bm2

v : (33)

The overall algorithm is summarized next.

Algorithm

Step 1: For a given probability of false alarms PFA, �nd
the corresponding � from a �2(1) table.

Step 2: Obtain estimates b!0 (6), b�0 (7), bms (8), bm2s (16),b�2s (24), and bmv (31).



Step 3: Subtract bms cos(b!0t+ b�0) from x(t) and treat the
resulting process as v(t). Follow existing (poly)spectral
estimation procedures to estimate S2v(2!0), S2v(3!0),
H2(2!0) and H5(2!0) in order to calculate (30). Mul-
tiply the result by � to obtain T . When it is known
a priori that v(t) is white Gaussian, we only need to

calculate b�2v (33) in order to obtain var( b�2s) (32).
Step 4: If ( b�2s)2 < T , we declare that x(t) comes from the

constant amplitude model (1); otherwise, it is more
likely that x(t) obeys the random amplitude model (2).

6. SIMULATIONS

We present here some numerical examples to verify the per-
formance analysis results and the random amplitude detec-
tion algorithm presented in this paper.

Example 1: Veri�cation of variance expressions
We �rst generated w(t) which was i.i.d. one-sided expo-

nential deviates with p.d.f. fW (w) = e�w. We then re-
moved its mean and passed the mean compensated process
~w(t) = w(t) � 1 through a �rst order FIR �lter with pa-
rameters [1; 0:5]. We then added a constant ms = 1 at
the output end and obtained a colored, non-Gaussian, and
non-zero mean process s(t). Additive noise v(t) was white

Gaussian with mean mv = �0:2 and variance �2v = 0:2. We
then generated T = 1; 024 points of x(t) according to (2)
with !0 = 1, �0 = 1:8. 200 independent realizations were
used to yield the empirical asymptotic variance results. The
available data were zero-padded to length 214 when calcu-
lating the sample cyclic mean via FFT. Table I illustrates
empirical vs. theoretical mean and asymptotic variance re-
sults. 2

Table I. Empirical and theoretical performance
of estimators, colored noise case

Formulas (12), (17) (8), (16) Theoretical

E[bms] 1.0038 1.0047 1.0000
Tvar(bms) 1.5063 1.5002 1.4897
E[bm2s] 2.3763 2.4038 2.3600

Tvar(bm2s) 92.6108 92.5800 84.0406

E[ b�2s ] 1.3672 1.3929 1.3600

Tvar( b�2s) 66.7438 66.7789 59.2214

Example 2. We have available T = 1; 024 data x(t) from
(1) where v(t) was white Gaussian with mean mv = 0:5
and variance �2v = 0:2. The harmonic parameters are
A = 1, !0 = 1, �0 = 1:8. The false alarm rate chosen
was PFA = 0:05 which corresponds to � = 3:841. We fol-
lowed the algorithm outlined in Section 5 and generated 500

independent realizations. In Fig. 1 we show the ( b�2s)2 esti-
mates in solid lines, the true threshold T in dashed line, and

the estimated threshold bT in dotted line. Out of 500 ( b�2s)2
estimates, 21 exceeded T and 24 exceeded bT . Both num-
bers are close to the expected total number of false alarms
0:05 � 500 = 25. 2

7. CONCLUSIONS

Periodogram is a conventional tool to check whether a har-
monic of some form is present in the given data. How-
ever, it does not tell exactly what form of harmonic is in-
volved. Random amplitude (or multiplicative noise as is
often called) appears in many important applications and
its nature re
ects certain characteristics of the source. In
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Figure 1. Statistical test for random s(t).

this paper, we �rst introduced ways of extracting informa-
tion about the amplitude, such as its mean ms and vari-
ance �2s . We then analyzed the performance of the bms andb�2s estimates. The value of �2s can be used as a quantita-
tive measure for target spread or source (in)coherency in
Doppler applications. To make a decision as to whether the
harmonic amplitude can be regarded as truly random, we

compare ( b�2s)2 with a threshold normalized by the variance

of b�2s and employ a �2(1) test. The algorithms and vari-
ance expressions developed in this paper are also easy to
implement as illustrated by the numerical simulations.
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