
DETECTION OF SIGNALS WITH UNKNOWN PARAMETERS IN

GBK-DISTRIBUTED INTERFERENCE

D. Robert Iskander Abdelhak M. Zoubir

Signal Processing Research Centre, QUT

GPO box 2434, Brisbane, Q. 4001, Australia

d.iskander@qut.edu.au

ABSTRACT

In this paper, the design of optimal schemes for detecting

deterministic narrowband signals with unknown parameters

in correlated interference modelled by the recently devel-

oped GBK distribution is considered. Theoretical deriva-

tions of an optimal detector, in the Neyman-Pearson sense,

are given for the case where the signal amplitude and phase

are unknown. The performance of the detector is then eval-

uated using extensive computer simulations.

1. INTRODUCTION

The research dedicated to the design and optimisation of de-

tectors of signals in interference is a constantly evolving �eld

of study. In some applications the considered interference

can be assumed Gaussian. Such an assumption greatly sim-

pli�es the analysis and usually leads to optimal solutions.

However, it has been found that in many applications the

Gaussianity assumption is not valid [7]. This has lead to the

area of modelling interference by non-Gaussian probability

distributions. Non-Gaussian probability models include, for

example, the generalised Gaussian or generalised Laplace

distribution. In the case where the data is positive (e.g. an

amplitude of a narrowband process, or in the case of life dis-

tribution) the Log-Normal, the Gamma, the Weibull, and

the K-distributions are frequently used models. Recently a

new distribution, called the Generalised Bessel function K

(GBK) distribution was proposed [4]. The GBK distribu-

tion includes a large number of the well known interference

models, such as the ones mentioned above, while retain-

ing mathematical tractability. It was also shown that the

GBK-distribution can represent the amplitude distribution

of a spherically invariant random vector (SIRV), which in

turn enables coherent modelling of the underlying interfer-

ing phenomenon [4].

The GBK distribution encompasses a large number of

known amplitude models including the Weibull and the K-

distribution. Thus, it is of interest to design an optimal sys-

tem for detecting signals in GBK-distributed interference.

Such a system will possess an important feature of having

the same structure for all spherically invariant models in-

cluded in the GBK distribution. It is also expected that

such a detection system will perform better than systems

designed for more speci�c models in situations where the

interference statistics changes from time to time (or from

location to location).

In this paper we design an optimal detector (in the

Neyman-Pearson sense) for deterministic signals with un-

known amplitude and phase in GBK-distributed interfer-

ence and analyse its performance using extensive computer

simulation. As an example, we consider a radar scenario

where the aim is to detect a target signal in clutter. We

show, that the optimal schemes for detecting signals in

Rayleigh, Weibull, K, and many other distributed inter-

ference processes are identical.

2. THE GBK DISTRIBUTION

The SIRV multivariate representation of the GBK distribu-

tion is given by [4]
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where x = [x1; : : : ; x2N ], �1 > 0, �2 > 0, and c > 0 are

the distribution parameters, K�(�) is the modi�ed Bessel

function of the second kind of order �,M is the covariance

matrix (assumed to be invertible), k � k is the Euclidean

norm,
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and the coe�cients P(N;k) are calculated recurrently

P(N;k) = P(N�1;k) C(N;k) + P(N�1;k�1);
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; k < N;

P(0;0) = 1, P(N;0) = 0, and P(0;k) = 0.



It was established that the theory of SIRV can be ap-

plied when the interference amplitude is modelled by the

GBK distribution, having pdf given by
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with the shape parameter �1 and the power parameter c,

such that

C(N;k) � 0; k = 1; : : : ; N � 1: (3)

3. DESIGN OF A DETECTOR

Consider a radar scenario, as an example. Let

~s = sI + jsQ = Ae
j�
~v; (4)

be the complex envelope of a narrowband target signal,

where sI and sQ represent the inphase and quadrature

components of the target signal complex envelope, ~v is a

complex N -dimensional vector of the transmitted signal, A

accounts for the channel attenuation and the target cross-

section, and � accounts for the initial phase of the received

coherent pulse train [3]. The detection problem can be ex-

pressed in the following framework

H : z = c

K : z = s+ c; (5)

where H denotes the null hypothesis, K the alternative

hypothesis, and where z = [zI ; zQ], c = [cI ; cQ], and

s = [sI ; sQ], are real vectors with 2N entries represent-

ing the observations of the received signal, clutter signal,

and target signal, respectively.

Since the theory of SIRVs can be applied when the clut-

ter amplitude is modelled by the GBK distribution with

certain values of the parameters �1 and c, one can use a

whitening transformation without penalty. This is due to

the fact that a SIRV is closed under a linear transforma-

tion [5]. Whitening the received signal leads to the following

hypothesis alternative framework

H : x = n

K : x = u+ n; (6)

where x is the whitened version of the received signal vector

z, and n and u represent the whitened versions of the clut-

ter signal vector c and target signal vector s, respectively.

Note that the whitening transformation does not change

the statistical properties of a parametric detector as long

as the clutter process is spherically invariant.

Since the clutter process can be assumed to be a zero-

mean process, the whitened version of the target signal can

be expressed as u = Aej�p, where p, referred to as the

signal pattern, is the whitened version of v.

Since the GBK-distribution ful�ls the requirements of a

SIRV, it can be also represented as a result of compound-

ing the Gaussian process with some other process. In other

words we can represent a GBK-distributed variate as condi-

tionally Gaussian with some modulating variate s > 0. The

so called characteristic probability density function, fS(s),

can be found by solving the following integral equation [1, 6]
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where fX(x) is given in (1) and �1c � 2 (for N = 2). How-

ever, no closed form expression for fS(s) has been found.

Nevertheless, the knowledge of fS(s) is not necessary

when designing optimal detection structures for the case

when the target signal is unknown or partially known. Fol-

lowing [2], the generalised log-likelihood ratio test (GLLRT)

for detecting signals with unknown amplitude and phase in

GBK-distributed clutter is given by
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respectively, where h�; �i denotes the dot product,
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and T is a suitable threshold that controls the level of false

alarm. The block diagram of the optimal GLLRT detector

implementing the test given in (8) is shown in Figure 1.

Whitening
transform

x

g

g

  (  )

  (  )

T

Comparator
_

K

||   ||

z

p

H

r
kxk2 �

jhx;pij2

kpk2

Figure 1. Optimum GLLRT detector for a target sig-
nal with unknown phase and unknown amplitude in GBK-
distributed clutter.

The detection scheme based on the GLLRT given in (8)

has the important feature of reducing to the optimal scheme



for detecting signals in Gaussian clutter when the param-

eters of the GBK distribution are set to �1 = 1
2
, �2 = 1,

and c = 4. In this particular case, the function g(x) given

in (9) reduces to

g(kxk) = �kxk
2

:

Also, it is straightforward to show that for �1 = 1 and c =

2 the function in (9) reduces to the one given in [2, Eq. (18)]

leading to the scheme for detecting signals in K-distributed

clutter. Note that in this case the coe�cients P(N;k) reduce

to zero for k = 1; : : : ; N � 1 and P(N;N) = 1. Similarly,

letting �1 = 0:5 and �2 = 1 one can obtain a detection

scheme for signals in Weibull distributed clutter (provided

that the shape parameter of the Weibull distribution is less

than or equal to 2).

4. PERFORMANCE ANALYSIS

There exist no close form expression for the pdfs of the

statistic �(x) neither under the null hypothesis nor under

the alternative. Thus, we resort to computer simulations to

study the performance of the detector.

It is assumed that the parameters of the GBK-

distribution, namely �1, �2, and c, are known. This corre-

sponds to the case where the clutter statistics are obtainable

before the detection process is performed.

The performance analysis of the detectors of signals in

GBK-distributed clutter has been evaluated using 10000 re-

alisations of the clutter process in each case.

4.1. The Known Signal Case

Consider �rst the case where the amplitude and the phase

of the target signal are known. The detection problem in

this case can be resolved by using the log-likelihood ratio

test (LLRT) given by

�(x) = g(kx� uk)� g(kxk)
H1

?
H0

T; (10)

In this case, the LLRT statistic, �(x), does not depend

on the target signal parameters but depends on the target

signal-to-clutter SCR ratio,

SCR =
kuk2

E[kNk2] ;

the number of integrated pulses, N , and the parameters of

the GBK-distributed clutter. Speci�cally, the LLRT statis-

tic depends only on the shape parameters �1 and �2, and

the power parameter c. Since the shape parameters �1 and

�2 are interchangeable, it is su�cient to evaluate the perfor-

mance analysis of the detector only as a function of �1. It

should be noted that the performance analysis of the LLRT

based detector is of the greatest interest since it gives a

benchmark for the GLLRT based detectors. In other words,

the detector of known signals has the best possible perfor-

mance.

In Figure 2, the probability of detection is shown for the

LLRT based detector as a function of SCR for four di�erent

values of the power parameter c of the GBK distribution,

namely for c = 0:5, c = 1, c = 2, and c = 3. The detection

performance was evaluated for two integrated pulses. The

remaining parameters of the GBK-distributed clutter were

set to �1 = 0:5 and �2 = 2. Since all detection schemes are

independent of the scale parameter �, it was �xed to 1 in

all simulations.

Similarly, in Figure 3, the probability of detection is

shown for the LLRT based detector as a function of SCR for

four di�erent values of the shape parameter �1 of the GBK

distribution, namely for �1 = 0:25, �1 = 0:5, �1 = 0:75,

and �1 = 1. The remaining parameters of the GBK-

distributed clutter were set to �2 = 2, � = 1, and c = 2.
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Figure 2. Probability of detection for the LLRT based
detector of known signals as a function of SCR and the
power parameter c of the GBK distribution for N = 2.
The shape parameters �1 and �2 are set to 0:5 and 2,
respectively.
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Figure 3. Probability of detection for the LLRT based
detector of known signals as a function of SCR and the
shape parameter �1 of the GBK distribution for N = 2.
The shape parameter �2 and the power parameter c are
both set to 2.

Discussion. From Figure 2, it is readily seen that the

power parameter c of the GBK-distributed clutter process

greatly a�ects the performance of the LLRT based detector.



Speci�cally, for small values of the power parameter c, say

c � 1, the probability of detection increases for small SCR

while it decreases for large SCR. Conversely, for a larger c

the probability of detection increases for large SCR while it

decreases for small SCR.

Similarly, from Figure 3, one concludes that the shape

parameter �1 of the GBK-distributed clutter also a�ects the

performance of the LLRT based detector. Speci�cally, for

small values of �1 the probability of detection decreases for

large SCR and increases for low SCR. Conversely, for larger

values of �1 the probability of detection increases for large

SCR and decreases for low SCR. Thus, the shape parameter

�1 has a similar a�ect on the probability of detection as the

power parameter c.

4.2. The Unknown Signal Case

Following the same reasoning as for the LLRT based detec-

tor, we conclude that the GLLRT based detector is inde-

pendent of the phase of the signal but depends on the signal

amplitude and the mean clutter power.

In Figure 4 and Figure 5 we present two typical examples

of the receiver operating characteristics (ROCs), for three

distinct cases where: (i) the target signal is known, (ii) the

target signal phase is unknown, and (iii) the target signal

amplitude and phase are unknown. The SNR was 10 dB.
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Figure 4. Receiver operating characteristics for the LLRT
and GLLRTs based detectors of target signals in GBK-
distributed clutter for N = 2. The shape parameters �1
and �2, and c are set to 0:5, 2, and 0:5, respectively.

Discussion. From the simulation results, it has been ob-

served that the power parameter c a�ects the ROC curves in

a much grater rate than the shape parameter �1. It should

be noted that the parameters of the GBK-distributed clut-

ter have similar a�ect on the GLLRT based detector as they

have on the LLRT based detector. Also, the performance

of the GLLRT based detector quickly deteriorates at low

SCR.

5. CONCLUSIONS

In this paper we have designed an optimal scheme for de-

tecting signals with unknown parameters, such as the am-

plitude or phase, in interference modelled by the recently
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Figure 5. Receiver operating characteristics for the LLRT
and GLLRTs based detectors of target signals in GBK-
distributed clutter for N = 2. The shape parameters �1,
�2, and c are set to 0:25, 2, and 2, respectively.

developed GBK-distribution. We have shown that the op-

timal schemes for detecting signals in Rayleigh, Weibull,

K, Gamma, Generalised Half Gaussian, Generalised Half

Laplace, and many other interference distribution are iden-

tical in their structure. Performance analysis of the pro-

posed detector has been investigated using extensive com-

puter simulations. The GBK distribution is attractive in

the sense that the classi�cation of the interference model

can be avoided.
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