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ABSTRACT

The problem addressed in the paper is the detection
of abrupt changes embedded in multiplicative colored
Gaussian noise. The multiplicative noise is modeled
by an AR process. The Neyman Pearson detector is
developped when the abrupt change and noise para-
meters are known. This detector constitutes a refer-
ence to which suboptimal detectors can be compared.
In practical applications, the abrupt change and noise
parameters have to be estimated. The maximum like-
lihood estimator for these parameters is then derived.
This allows to study the generalized likelihood ratio
detector.

1. INTRODUCTION

There is an increasing interest in multiplicative noise
models for many signal processing applications such
as image processing (speckle). This paper addresses
the problems of detection and estimation of abrupt
changes corrupted by multiplicative colored Gaussian
noise. The signal can be modeled as:

z(n)=">b(n)s(n)

In image processing, b (n) = m—+y (n) is the multiplica-
tive speckle noise (with mean m) and s(n) is a line of
the image. When intensity images are considered, the
statistical properties of b (n) and s(n) can be defined
as follows.

The speckle noise is usually modeled as a stationary
exponentially distributed process. However, in many

n=1,..,N (1)

applications including SAR image processing, the speckle
is reduced by incoherently averaging N; uncorrelated
images for large values of IV; [2]. The resulting reduced-
speckle intensity images are Gaussian distributed (us-
ing the central limit theorem). The simple case of a
multiplicative white Gaussian noise has been studied in
[9]. However, as it is specified in [2], it is more realistic
to model the speckle by a band-limited noise process

containing only lower spatial frequencies. In this case,
the algorithms developed in [9] cannot be used. Here,
y (n) is assumed to be a zero-mean Gaussian stationary
AR(p) process with parameters 02 and a = (a4, ..., ap)T.
The multiplicative colored noise y (n) can be modelled
by an AR process for the following reasons:

efor any real-valued stationary process y (n) with
continuous spectral density S (f), an AR process can
be found with a spectral density arbitrarily close to
S(f) (3], p- 130).

ezero-mean Gaussian processes are completely de-
fined by their spectra.

An ideal abrupt change can be modelled as a step
of amplitude A, located at position ng [1],[2]:

s(n)=1
sn)=1+A4

n <ng
n > ngo (2)
Eq. (2) models the edge between two regions with dif-
ferent reflectivities in piecewise constant backgrounds.
Abrupt change detection and estimation, corrupted by
additive noise, has been studied for long time (see [1]
and references therein for an overview). The new con-
tribution here is the development of several detection
algorithms for abrupt changes multiplied by a col-
ored Gaussian noise.

The first part of the paper studies the optimal Ney-
man Pearson Detector (NPD). The NPD is optimal in
the sense that it minimizes the Probability of Non De-
tection (PND) for a fixed Probability of False Alarm
(PFA). The abrupt change and noise parameters have
to be estimated in practical applications. The Maxi-
mum Likelihood Estimator (MLE) for these parameters
and the Generalized Likelihood Ratio Detector (GLRD)
are then studied.

2, NEYMAN PEARSON DETECTOR (NPD)

Under hypothesis H, the signal is a stationary zero-
mean AR(p) Gaussian sequence y(n) with parameters



0% and a = [a1,...s ap]Tplus a constant mean m or Maclaurin series expansions, or expansions as mix-
tures of noncentral x? distributions have been derived.

z (n) =y(n) +m (3) However, these expansions are difficult to study [6]. In-

stead, the distribution of @ (X) can be approximated,
leading to a simple test statistic. For example, Fig.’s
1.a) and b) show that the Probability Density Function
z(n) = (y(n) +m) s (n) (4) (PDF) of Q (X)) can be approximated by the Gaussian

PDF under hypotheses Hy and H;.

Under hypothesis H;, the process y (n) +m is mul-
tiplied by an amplitude A abrupt change at time #y:

Under hypothesis H;, the likelihood function for the

Gaussian vector X = [z(1), ...,z(N)]" (with mean M, 01
and covariance matrix %;) denoted L (X |H;) is defined '
by:
1 _ 1 T -1 - 0.05
nL(X|Hi) = -5 (X = M) 3 " (X = M) X
—21n(27) — 1 In|%) =
In (5), | ;| is the 3; matrix determinant, My = m[1, ..., l]T 0

and M; = mS with § = [s(1),...,s(N)]". The in- 30 40 &0
verse covariance matrix of an AR(p) process can be
expressed as a function of the model parameters o2 and
a=lag, ..., ap]T with the Gohberg-Semencul formula:

1
Yol = = (FF" — GG™) (6)

where F' and G are N x N lower triangular matrices
defined for instance in [8]. Under hypothesis Hy, the
inverse covariance matrix of the vector X can then be
expressed as:

1

-1 _ L T T
= 02D <FF GG >D (7) 12 14 16X 18 20 22
where D = diag (1/s(1),...,1/s(N)) is a diagonal N X
N matrix whose elements are 1/s(¢). The Neyman- (b)
Pearson test is defined by: Fig 1. Histograms and PDF of Q (X) with 95%
Ho rejected if  Q (X) > S (PFA) (8) confidence intervals a) under Hy b) under H;
1
In (8), Q(X) = Qo (X) — Q1 (X) where Qp (X) and [
Q1 (X) are the two positive definite quadratic forms 0.4
T e I
Qo (X) = (X —Mo) %" (X — Mo) Q06
2o
Q1 (X) = (X./S—Mo)" x5t (X./S — M) a3
n 0.4
The operator (./) denotes the element by element vec- E
tor division. Note that the computation of Qg (X) and 0.2
@1 (X) can lead to a high computational cost since A=0.05
F and G are N x N matrices. To solve this prol?— 00 02 04 06 08 1
lem, Q¢ (X) and Q¢ (X) can be expressed as quadratic PFA
forms of ‘?he AR parameters.. This leads to. a simple Fig. 2. ROC Curves for the NPD
computation of the test statistics @ (X) using p X p
matrices [5]. The quadratic form @ (X) is indefinite The approximated ROC curves are shown in Fig. 2
in general. Relatively little attention has been devoted as a function of the abrupt change amplitude A. As it
to the problem of obtaining the distribution of indef- can be seen, for A > 0.05, the test shows very good per-

inite quadratic forms of Gaussian vectors. Laguerre formance. The noise and abrupt change parameters are



unknown in practical applications. Thus, the parame-
ters have to be estimated. The next part of the paper
derives the Maximum Likelihood Estimator (MLE) for

0= (m, 02,a,A,n0)T

3. MAXIMUM LIKELTHOOD ESTIMATOR

The maximum likelihood principle provides a method
to estimate a parameter vector # from a finite length
data record X = [z(1),...,z (N)]T Under hypothe-
sis Ho, X — My is a Gaussian AR(p) process whose
parameters can be estimated with the conventional au-
tocorrelation or covariance methods [7]. This section
focuses on estimating the noise and abrupt change pa-
rameters under hypothesis H;. The noise and abrupt
change parameters are (m, o2, a) and (4, ng) such that
0= (m, 02,CL,A,TL()>T with a = [a (1), ...,a(p)]T. The
exact maximization of the likelihood function of the
Gaussian vector X produces a set of highly non-linear
equations, even in the pure AR case (4 = 0) [8]. The
maximization of the likelihood function can be approx-
imated by maximizing the conditional likelihood func-
tion for large data records ([7], p. 186):

Lx(p+1),....,x(N)|z(1),...,z(p);0) (9

The driving AR(p) process u(n) is assumed an i.i.d. se-
quence with zero mean and variance 2. The Jacobian
matrix determinant of the transformation from U =
wp+1),., ()] to X =z(p+1),...,z (V)] is
N -1
/] = l I1 S(i)] :
t=p+1

conditioned on the p first values z(1),...,z(p) can be
determined:

L(f() :L<)~(|x(1),...,x(p);9)

R . 2
T (2re2)(N-p)/2 exp f (x,m,(f ,a,s)

Consequently, the PDF for X

(10)

with

Setting the partial derivatives of In L ()N( ) with respect

to m and 02 to zero and replacing m and 62 in In L ()N() by

their estimates, the criterion J; has to be maximized
with respect to a, A and ng where

N

J1 ()N(;a,A,no) =— Z Ins (i) — N_pan(a)

. 2
i=no+1

(12)

J1 is maximized over a by minimizing ) (a). Note
that @ (a) is a quadratic form in a. As a result, its
differentiation yields a global minimum (which may
not be unique) defined by a matrix equation denoted
as Waygr = —w. Qppr is then substituted in (12).

The maximization of L ()N( |z (1),...,z(p); 9) over the
whole parameter vector 8 is equivalent to the maxi-
mization of Jo ()N(;A,no) =.J; ()N(;@MV,A,TLO) with

respect to (A,no)T only. Thus, the MLE for the para-
T,
meter vector (4, ng)" is:

ng = arg lg}%XN {Sjp J2 <X§A7k)} (13)

A = arg sup Jo <)~(;A,TL/\0) (14)
A

This case is significantly more complicated than the
white Gaussian multiplicative noise case [9]. The dif-

ferentiation of Jo ()N(, A,no) with respect to A yields

a set of non-linear equations which do not lead to an

analytical closed form expression of A. Consequently,

a numerical method has to be used for the estimation

of sup Js (X;A,k). This paper proposes to use the
A

conventional iterative quasi-Newton BFGS algorithm
(available in the Matlab optimization toolbox). Par-
tial derivatives are computed using a numerical differ-
entiation method via finite differences (although they
can be analytically derived with higher computational

cost). In general, the cost function Jo ()N(;A,k) has

several local maxima. Thus, the optimization proce-
dure has to be initialized sufficiently close to the global
maximum.

Abrupt change instant initialization

When the multiplicative noise is non-zero mean
(m # 0), there is a simultaneous mean value and vari-
ance jump after the abrupt change instant. The off-
line estimation procedure described in ([1], p. 66) for
abrupt mean changes then can be used for the initial-
ization of 7g.

A mean value jump occurs in the signal z2 (n), when
the multiplicative noise is zero-mean (m = 0). This
jump can be used for the initialization of 7.

Abrupt change amplitude initialization

After the abrupt change instant has been estimated,
the amplitude A can be estimated by the ratio of the
means before and after the change instant.

The Mean Square Errors (MSE) of Ay and Tig g,
computed with N, = 500 Monte-Carlo runs are de-
picted in Fig. 3, for m = 1,02 = 1,A = 0.5,n0 = &,
versus the number of samples. The comparison with
the true parameters shows the ML algorithm efficiency.
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Fig. 3.b) Mean Square Error of A.

4. GENERALIZED LIKELIHOOD RATIO
DETECTOR (GLRD)

The Generalized Likelihood Ratio Detector (GLRD)
estimates the unknown parameters under hypotheses
Hy and H; using the maximum likelihood procedure

and uses these estimates in the Neyman-Pearson test
defined in (8). The GLR test for our problem is:

L(X | )

Hj rejected if —
L (X ‘HOML)

> K(PFA)  (15)

where 97 m1, denotes the MLE of 8 under hypothesis H;.
The GLR test performances are depicted in Fig. 4 as a
function of the abrupt change amplitude. No optimal-
ity property can be obtained for the abrupt change de-
tection problem when the abrupt change instant is un-
known, even if the parameters before and after change
are known [4]. However, Fig. 4 shows that the GLRD
has a good performance for an abrupt change ampli-
tude 4 > 0.2.

A=0.1
A=0.15

A=0.2

0 02 04 06 08 1
PFA
Fig. 4. ROC Curves for the GLRD

5. CONCLUSION

The optimal Neyman-Pearson Detector (NPD) was stud-
ied for the abrupt change detection, in presence of a
multiplicative colored Gaussian noise. The NPD pro-
vides a reference to which suboptimal detectors can be
compared. However, the NPD requires knowledge of
the abrupt change and noise parameters. The abrupt
change and noise parameters are unknown in practi-
cal applications and have to be estimated. The Maxi-
mum Likelihood Estimator (MLE) for these parameters
was then derived. The MLE procedure combined with
the NPD yield the Generalized Likelihood Ratio De-
tector (GLRD). The GLRD performance was studied
as a function of the abrupt change amplitude.
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