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ABSTRACT

In many practical detection and classi�cation problems,
the signals of interest exhibit some uncertain nuisance pa-
rameters, such as the unknown delay and Doppler in radar.
For optimal performance, the form of such parameters must
be known and exploited as is done in the generalized likeli-
hood ratio test (GLRT). In practice, the statistics required
for designing the GLRT processors are not available a priori
and must be estimated from limited training data. Such de-
sign is virtually impossible in general due to two major dif-
�culties: identifying the appropriate nuisance parameters,
and estimating the corresponding GLRT statistics. We ad-
dress this problem by using recent results that relate joint
signal representations (JSRs), such as time-frequency and
time-scale representations, to quadratic GLRT processors
for a wide variety of nuisance parameters. We propose a
general data-driven framework that: 1) identi�es the appro-
priate nuisance parameters from an arbitrarily chosen �nite
set, and 2) estimates the second-order statistics that char-
acterize the corresponding JSR-based GLRT processors.

1. INTRODUCTION

Optimal detection and classi�cation of signals in the pres-
ence of noise requires the knowledge of certain underlying
statistics. In most practical problems, those statistics are
not known a priori and must be estimated from available
training data.
In many situations, the signals to be detected are best

modeled as stochastic signals exhibiting some uncertain pa-
rameters, the so-called nuisance parameters. For example,
the radar returns from a complex object can be modeled as
a random signal exhibiting unknown delay and Doppler pa-
rameters. Such detection problems are formulated as binary
composite hypothesis tests of the form1

H1 : x(t) = s
�(t) + n(t)

H0 : x(t) = n(t) (1)

where t 2 T , the observation interval, x is the observed
waveform, s� is a (nonstationary) stochastic signal with nui-

sance parameters � = (�1; �2; � � � ; �M ) 2 S � IRM , and n is
the additive noise.
For optimal performance, the form of the nuisance pa-

rameters must be known and exploited. The generalized
likelihood ratio test (GLRT) is often used in practice in
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1
Such classi�cation problems can be similarly described via

an M -ary composite hypothesis test { we restrict our discussion

to detection problems in this paper.

which the maximum likelihood (ML) estimate of the pa-
rameters is �rst formed and then the likelihood ratio (LR)
corresponding to the estimate is used as the test statistic2 :

L(x) = L�̂ML(x) = max
�2S

L
�(x) ; (2)

where L� is the LR corresponding to the nuisance parame-
ters � [1].

The form of L� depends on the statistics of s� and
n. Since the statistics have to be estimated from train-
ing data, we assume a characterization of L� in terms of
second-order statistics. In particular, we assume that n
is zero-mean circular Gaussian with correlation function
Rn(t1; t2) = E[n(t1)n

�(t2)], and s� is a zero-mean second-
order (not necessarily Gaussian) signal with correlation

function R�
s.
3 We further assume the low-SNR (signal-to-

noise-ratio) regime in which the locally optimal test statistic
is given by [1]

L
�(x) � hR

�
sR

�1
n x;R

�1
n xi � Tr

�
R
�
sR

�1
n

�
; (3)

where h�; �i denotes the inner product and Tr(�) denotes the

trace of an operator4 (sum of the eigenvalues). Thus, under
our assumptions, the GLRT detector is completely deter-
mined by R�

s and Rn.
When the GLRT processor must be designed from labeled

training data, as is often the case in practice, there are two
key issues that need to be addressed:

1. Identi�cation of parameters. How can the nuisance
parameters that underlie a given data set be identi�ed?

2. Estimation of GLRT statistics. Given the nuisance
parameters, how can the GLRT statistics (R�

s and Rn)
be estimated from training data?

The �rst issue is fairly obvious yet highly nontrivial. The
second issue arises because the estimation of R�

s is not at all
straightforward (if not impossible) in general. The reason

is that even if noise-free realizations of s� are available,

di�erent realizations s
�i
i correspond to di�erent values of

�. Thus, for estimation of R�
s at a particular value of �,

all the realizations must be \aligned" in some sense to that
value. This is not always possible in general and crucially
depends on the dependence of R�

s on �.
Joint signal representations (JSRs), such as time-

frequency representations (TFRs) and time-scale represen-
tations (TSRs), can realize GLRT detectors in a broad

2
which is compared to a threshold to decidewhether the signal

is present (H1) or not (H0)
3
Extension to nonzero-mean situations is straightforward.

4R denotes the operator de�ned by the function R(t1; t2) as

(Rx)(t) =

R
R(t; u)x(u)du. A white-noise component guaran-

tees that R
�1
n exists.



range of composite hypothesis testing problems of the type
discussed above [2, 3]. Such JSR-based GLRT detectors
admit a uni�ed formulation in terms of parameterized uni-
tary operators which can be used to model a wide variety
of nuisance parameters that are quite relevant from a prac-
tical viewpoint5 | radar/sonar, machine fault diagnostics,
and biomedical signal classi�cation are some typical appli-
cations. For example, TFR-based detectors are appropriate
for unknown time- and frequency-o�set nuisance parame-
ters and have been successfully applied in machine fault
diagnostics [4]. More importantly, JSRs impose a structure
on nuisance parameters that provides a natural mechanism
for addressing the above-mentioned issues encountered in
data-driven detection and classi�cation.
In this paper, we propose a general data-driven detection

and classi�cation framework by exploiting the structure and
uni�ed formulation of JSR-based detectors. Using labeled
(H0 vs. H1) training data, our framework:

1. Identi�es the nuisance parameters, from a �nite set
chosen a priori, that \best �t" the data in a precise
sense.

2. Estimates the statistics characterizing the GLRT pro-
cessor corresponding to the \best" nuisance parame-
ters.

For example, our framework can determine whether time-
and frequency-shifts, or time-shifts and scale-changes are
the appropriate nuisance parameters in a given data set, and
design the corresponding (TFR or TSR) GLRT processor.
In the next section we provide a brief description of JSR-

based detectors and highlight their relevant features. In
Section 3, we describe the structure of the JSR-based data-
driven framework. Section 4 illustrates the performance of
TFR- and TSR-based algorithms on simulated data. Some
concluding remarks are presented in Section 5.

2. JSR-BASED DETECTORS

JSRs represent signal characteristics jointly in terms of two
or more variables or physical quantities (which de�ne the
nuisance parameters) | for example, time and frequency
in TFRs, and time and scale in TSRs. From a detection
viewpoint, the covariance-based JSRs are the appropriate
vehicle [3] and we now provide a brief description of such
JSRs.
Let G � IRM be anM -parameter Lie group and fU� : � 2

Gg be a family of unitary operators that is a unitary rep-
resentation of G on L2(IR); that is U� : L2(IR) ! L2(IR),
hU�s1;U�s2i = hs1; s2i, and U�U

0
� = U���0, for �; �

0
2 G,

where � denotes the group operation [3]. The \coordinates"
of � = (�1; �2 � � � �M ) represent the variables of interest, and
the unitary operators U� represent the signal transforma-
tions of interest (that produce the nuisance parameters),
such as time and frequency shifts, scale changes etc.
Consider a given family fU� : � 2 Gg. On one hand,

fU�g de�nes a class C of JSRs with respect to the variables
� = (�1; �2 � � � �M ) via [3]

(Ps)(�;K) = hKU
�1
� s;U

�1
� i (4)

where the JSR is denoted by the operator P that maps s 2
L2(IR) into the space of functions de�ned on G. Di�erent
choices of the operator K : L2(IR)! L2(IR) yield di�erent
JSRs from C. On the other hand, fU�g de�nes a class
of composite hypothesis testing situations of the form (1)
characterized by [3]

R
�
s = U�RrU

�1
� (5)

5
The operator parameters de�ne the nuisance parameters.

for some \reference" correlation function Rr, where the
nuisance parameters correspond to the JSR variables � =
(�1; �2; � � � �M). (5) is equivalent to the signal model

s
�
(t) = (U�sr)(t) (6)

for some reference signal sr with correlation function Rr.
The key point is that the JSRs from C constitute the canon-
ical GLRT statistics L� for the hypothesis testing problem
characterized by (5) [3]:

L
�(x) = (Py)(�;Rr)� Tr(R�

sR
�1
n ) ; y = R

�1
n x ; (7)

where note that the operator characterizing the JSR is K =
Rr. The GLRT detector can then be realized via (2) by
computing the maximum over � 2 S � G (the range of the
nuisance parameters).
Intuition for estimation. Note from (5) that if U�

is known, we need to estimate R�
s for only one value of �

because of the group structure. The reason is that for any

�; �0 2 G, R�
s and R�0

s can be transformed into each other:

R�0

s = U�0���1R�
sU

�1
�0���1

, and, similarly, s�
0

= U�0���1s�

, for the same underlying sr in (6). This suggests a mecha-

nism for estimating R�o
s at a particular value �o by \align-

ing" di�erent realizations of s�, corresponding to di�erent
values of �, to �o. From a purely detection viewpoint, the
actual value of �o does not matter because of the group
structure: R�o

s for any �o can serve as the reference Rr in
(5) and (7).
Intuition for identi�cation. First of all, from a prac-

tical perspective, the choice of nuisance parameters that
best describe a data set can only be made from a �nite
set. Di�erent classes of JSRs, characterized by di�erent uni-
tary representations fU�g of di�erent groups, can model a
wide range of practically relevant nuisance parameters [3].
Depending on the particular application at hand, a �nite
candidate set of such nuisance parameters can be chosen a
priori. The \best" nuisance parameters from the set6 are
those which result in an Rr estimate after \alignment" that
has the smallest e�ective rank.7 The intuition behind the
criterion is that, in general, the \unaligned" signal correla-
tion function is of a higher rank than Rr due to nuisance
parameters. Moreover, a mismatch of parameters in \align-
ment" will also in general lead to a higher rank estimate
of Rr . For quadratic detection, de
ection [1] captures this
notion of smallest rank, and is also a measure of SNR. In
our case, de
ection is given by H(Rr) � Tr((RrR

�1
n )2).

3. UNIFIED JSR-BASED DATA-DRIVEN
FRAMEWORK

Consider the hypothesis testing problem (1) characterized

by R�
s and Rn assumed to be unknown. Suppose that we

have Nj training realizations, xji , i = 1; 2; � � �Nj, under Hj,
j = 1; 2, available to us. Further suppose that that we
have Q classes, Ci, i = 1; 2; � � �Q, of JSRs (de�ned by a
corresponding group Gi and a family of unitary operators
Ui

�i
), that have been chosen a priori to re
ect the types of

likely nuisance parameters (such as time-frequency shifts,
scale changes, chirp rate changes etc.). The structure of the
JSR-based detectors suggests the following two-part data-
driven algorithm to design the \best" GLRT detector.

Estimation Algorithm

6
with a corresponding class of JSRs

7
Rank is the number of nonzero eigenvalues.



Step 1. Estimate Rn = R0 and R1:

bRn(t1; t2) =
1

N0

N0X
i=1

x
0
i (t1)x

0�
i (t2) ; (8)

bR1(t1; t2) =
1

N1

N1X
i=1

x
1
i (t1)x

1�
i (t2) : (9)

De�ne the operator bD = (bR1 � bR0)bR�1
1 which is the (es-

timated) Wiener �lter for estimating the signal component

from an H1 realization.
8

Step 2. Choose the \reference" template, bRa = bR1 �bRn, which serves as an estimate of Rr for the purpose of
alignment.
Step 3. For each JSR class Cj , j = 1; 2; � � �Q, do:

Initialize bRr(t1; t2) = 0 , (t1; t2) 2 T � T .
For i = 1 to N1

begin

�̂ = arg max
�2S

h
(Pyi) (�; bRa) � Tr

�bR�
s
bR�1
n

�i
;

bR�
s = U�

bRaU
�1
� ; yi = bR�1

n x
1
i (10)

ŝi = bDx
1
i (\unaligned" signal estimate) (11)

ŝr;i = U
�1

�̂
ŝi (\aligned" signal estimate) (12)

bRr(t1; t2) =
[(i� 1)bRr(t1; t2) + ŝr;i(t1)ŝ

�
r;i(t2)]

i
(13)

endbRj
r = bRr (corresponding to the JSR class Cj)

Identi�cation Algorithm

Compute the de
ections H(bRj
r) , j = 1; 2; � � �Q. The

JSR class Cj corresponding to the largest de
ection de�nes
the nuisance parameters that best �t the training data, and
also de�nes the corresponding GLRT test statistics (7).

Remarks. The objective of the estimation algorithm
is to estimate the underlying Rr for each JSR class. It
does so by aligning (Step 3) all the H1 realization to the

value of � implicitly de�ned by the reference template bRa

(Step 2). Note that the estimate of � in (10) is the ML

estimate if bRa = Rr . Step 3 may be repeated to yield betterbRr estimates by replacing bRa with bRr. The identi�cation
step essentially chooses the nuisance parameters which pack
the signal energy in the smallest subspace. We note that

di�erent choices for the operators bD and bRa are possible |
due to space limitations we discuss only the above.

4. EXAMPLES: TIME-FREQUENCY AND
TIME-SCALE DETECTORS

We illustrate the data-driven framework with time-
frequency and time-scale GLRT detector design based on
simulated data. We use white Gaussian noise for all the
experiments.
Based on the available training data, the simplest

quadratic detector is

LB1(x) = hbRsx; xi ; bRs = bR1 � bRn ; (14)

which is an estimate of the (locally optimal) Bayesian

detector9 since bRs is an estimate of Rs =
R
R�
sp�(�)d�.

8
We assume enough data so that bRn and bR1 are invertible;

regularization or pseudo-inverses can be used otherwise.

9
Assuming random parameters with probability density

p�(�).

JSR-based detectors, on the other hand, exploit the struc-
ture of nuisance parameters via the GLRT detector (2) and
(7). Moreover, LB1 also admits a JSR-based realization via

LB2(x) =

Z
(Px)(�; bRr)p̂�(�)d� (15)

where p̂� is an estimate of p�. Although (14) and (15) are
equivalent under exact knowledge of statistics, their designs
based on training data can have substantially di�erent per-
formance as we will see. We will compare the performance
of L, LB1 and LB2 in the following.10 Recall that given U�

(which de�nes the nuisance parameters), Rr characterizes
the detectors since Rn = I (white noise).
We used an observation interval of T = 50 samples in all

the simulations. The underlying signal sr was Ns = 16 sam-

ples long and of the form sr(n) = a
P3

k=1
Zke

��n2ej2�fkn,

�Ns=2 + 1 � n � Ns=2, where Zk � N (0; 1), a is positive
constant to control the SNR, � is the (�xed) variance of
the Gaussian envelope, and fk 2 [1=16; 1=4] (�xed). This
corresponds to a rank-3 Ns �Ns matrix Rr . Without loss
of generality, for the \zero" value of the nuisance parame-
ters, the signal s(� = 0) = sr is centered in the observation
interval T . Using the estimation algorithm of Section 3,
the detectors were designed using Nd = 25; 100 realizations
each under H0 and H1, and were tested using 100 new re-
alizations each under H1 and H0.

4.1. Estimation

Time-Frequency Detectors. For Cohen's class of TFRs,
the nuisance parameters are time and frequency shifts; that
is, � = (t; f) 2 IR2 and (U(t;f)s)(�) = s(� � t)ej2�f� [2].
Nf = 32 point FFTs were used in the computation of the
TFRs of the observed signal x. The time and frequency
nuisance parameters uniformly took on values so that the

signal s(t;f) could be anywhere in the T�Nf time-frequency
plane. In this case, the data were generated at SNR =
10 log(E[sHs]=E[nHn]) = 2:3dB. ROC curves for the three
detectors for di�erent amounts of training data are shown
in Figure 1. The time-frequency (TF) GLRT detector L
performs the best, followed by the TF Bayes detector LB2,
which in turn performs better than the unaligned Bayes
detector LB1.
Time-Scale Detectors. For the a�ne class of TSRs,

the nuisance parameters are time-shifts and scale changes;
that is, � = (t; c) 2 IR � (0;1), and (U(t;c)s)(�) =
1p
c
s
�
��t
c

�
[2]. The TSRs were computed between the scales

of 1/4 and 2 using Nc = 65 samples. The nuisance param-
eters uniformly took on values so that the entire T � Nc

time-scale plane was occupied by the signal s(t;c). The SNR
in this case was 1:5dB. Figure 2 shows the comparison of
the three detectors for di�erent amounts of training data.
Again the time-scale (TS) GLRT detector (L) performs the
best, followed by the TS Bayes (LB2) which in turn performs
better than the unaligned Bayes (LB1). The performance of
the detectors becomes comparable for larger (100) training
data.

4.2. Identi�cation

Data with time-scale nuisance parameters were generated
as before and the estimation algorithms for both TFRs
and TSRs were applied to yield corresponding estimates
of Rr, whose eigenvalues are shown in Figure 3, along with

those for the unaligned estimate bRs. The eigenvalue pro-
�le is most concentrated for the time-scale-aligned data
as expected. Correspondingly, the de
ections of the three

10
Note that the estimation algorithm also implicitly results in

an estimate of p�.
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Figure 1. Time-Frequency Detectors: (a) 25 train-
ing vectors, (b) 100.

correlation function estimates are: 5.7(TS), 4.09(TF) and

1.92(unaligned).11

5. DISCUSSION AND CONCLUSIONS

Theoretically, the ML GLRT detector cannot outperform
the Bayes detector.12 However, if the detectors are es-
timated from limited training data, the JSR-based GLRT
can substantially outperform the Bayes detector as evident
from Figures 1 and 2.13 An intuitive explanation is that the
GLRT detector design e�ectively reduces the dimensional-
ity of the problem14 by exploiting the signal structure. The
same improvement is evident in the performance of the JSR-
based realization of the Bayes detector. Moreover, Figure 3
illustrates that our algorithm has the ability of correctly
\identifying" the true underlying nuisance parameters.
In summary, we have proposed a 
exible framework for

the practical design of GLRT-based detectors and classi-
�ers from training data. In general, such design is rendered
impossible due to di�culties in identifying the nuisance pa-
rameters, and in estimating the corresponding GLRT statis-
tics. Our framework overcomes these di�culties by exploit-
ing the structure of JSR-based GLRT detectors that pro-
vide a uni�ed formulation for a wide variety of nuisance
parameters. By relaxing the requirement of a priori sta-
tistical information, the proposed framework is suitable for
the numerous practical applications of composite hypothe-
sis testing in which only limited training data is available.

11
The sum of the eigenvalues is the same in the three cases.

12
In the case of random parameters. It can be shown that the

Bayes detector is equivalent to a GLRT but not necessarily the

ML GLRT [1].

13
The performance of all detectors converges for increasing

data | detailed analysis appears elsewhere.

14
thereby improving the small sample performance
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Figure 2. Time-Scale Detectors: (a) 25 training
vectors, (b) 100.
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