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ABSTRACT

In our earlier work [1, 2], we developed a robust detec-

tor for multipath constrained environments when the

transmitted signal is known. In this paper, we extend

these results to the case where the transmitted signal

is a random process. The approach in [1, 2] is to re-

place the orthogonal projection on the multipath signal

subspace S by the orthogonal projection on a repre-

sentation subspace G, such that G and S are close in

the gap metric sense. When the signal is random, S

is no longer a linear subspace but a set with a given

structure. The gap metric applies only when S and G

are subspaces. In this paper, we introduce the modi-

�ed de
ection as the appropriate measure to be used

in the random signal case. We design the representa-

tion subspace G to match the multipath signal set S in

the modi�ed de
ection sense. Wavelet multiresolution

tools are used to facilitate the design.

1. INTRODUCTION

Multipath signal detection has been a problem of ma-

jor concern in many areas, such as wireless communica-

tions, sonar, and radar. When the transmitted signal

s(t) is known, the traditional detector is the correlator

receiver. The correlator receiver correlates the received

signal with the transmitted signal and uses the peaks in

the correlator output to detect the signal. It is a simple

receiver, but its performance is poor when di�erent de-

layed replicas of the transmitted signal overlap. On the

other hand, the optimal receiver, the generalized like-

lihood ratio test (GLRT) receiver, is computationally

very intensive. It requires maximum likelihood (ML)

estimation of the channel parameters, which is a multi-

dimensional nonlinear optimization problem. In our

earlier work [1, 2], we developed a new receiver which
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is simple and can approximate the GLRT receiver. Re-

alizing that the ML estimate of the multipath signal

is the orthogonal projection of the received signal on

the multipath signal subspace S, we designed a second

subspace G, the representation subspace, that is close

to S, but whose orthogonal projection is easily com-

puted. \Closeness" between the subspaces S and G is

measured by the gap metric.

In this paper, we extend our approach by allowing

the transmitted signal s(t) to be random. When s(t)

is random, the detection problem becomes a compos-

ite hypothesis testing problem. The structure of the

optimal receiver is complicated because the multipath

signal set S is no longer a subspace. In this paper, we

still use the energy of the orthogonal projection of the

received signal on a representation subspace G as the

test statistic and we design G to be close to S in some

sense. However, since in this case, the multipath signal

set S is a set of random processes, it is no longer a sub-

space and the gap metric used in our earlier work does

not apply. A di�erent measure has to be used to mea-

sure the similarity between S and G. We introduce the

modi�ed de
ection. The modi�ed de
ection is a gener-

alization of one side of the gap metric. Being one-sided,

it has di�culties. If the modi�ed de
ection between S

and G is zero, then the modi�ed de
ection between S

and any subspace that includes G is also zero. This

means that the modi�ed de
ection by itself is not suf-

�cient. What is needed is the \smallest" subspace that

can minimize the modi�ed de
ection. This is where the

role of multiresolution analysis [3] comes into play. We

want to �nd the lowest resolution/scale subspace that

still minimizes the modi�ed de
ection. Once we have

designed the representation subspace, we use the en-

ergy of the orthogonal projection of the received signal

on the representation subspace as the test statistic.

Simulation results using whale sounds show that

our new receiver provides on average better perfor-

mance over some alternative simple receivers.



2. PROBLEM FORMULATION

In this section, we �rst brie
y review the formulation

of the multipath detection problem and its geometric

interpretation. Then, we will introduce the de�nition

of the modi�ed de
ection.

2.1. Multipath detection and its geometric in-

terpretation

The detection problem is a standard binary hypothesis

testing problem:

H1 : r(t) = sm(t) + n(t) (1)

H0 : r(t) = n(t) (2)

where the multipath noise free signal sm(t) is

sm(t) =

KX
k=1

�ks(t� �k) (3)

We assume that the channel parameters, K, f�kg, and

f�kg are all deterministic unknown. For simplicity, we

assume that the noise n(t) is white and Gaussian. In

our prior work, we dealt with the case where the trans-

mitted signal s(t) is known. Here, we will assume that

s(t) is a zero mean random process and the autocor-

relation function K(t; u) of s(t) is either known or can

be estimated.

If s(t) is known, the generalized likelihood ratio test

(GLRT) statistic is the norm square of the orthogonal

projection of the received signal on the multipath signal

subspace, i.e.,

L = k PS(r(t)) k
2
2 (4)

where

S =

(
sm(t) =

KX
k=1

�ks(t� �k);K 2 ZZ+; �k; �k 2 RI

)

(5)

is the multipath signal subspace and PS is the orthog-

onal projection operator on S.

Evaluating the orthogonal projection PS(r(t)) is not

computationally feasible. Instead, in [1, 2], we devel-

oped an algorithm to approximate the multipath signal

subspace S by a representation subspace G whose or-

thogonal projection is easily computed. We used the

gap metric to measure the similarity between S and G.

Once we have designed the representation subspace G,

we use

L0 = k PG(r(t)) k
2
2 (6)

as the test statistic.

In this paper, we extend our approach in [1, 2] to

include the random signal case. We design a represen-

tation subspace G to match S. However, since S is

no longer a subspace if s(t) is random, the gap met-

ric does not apply. We have to use a di�erent measure.

We observe that, with s(t) being a random process, the

signal set S given by (5) is essentially an ensemble of

subspaces in that, for a �xed realization of s(t), S is

a subspace. Therefore, our goal is to design a repre-

sentation subspace G to approximate S in an ensemble

average sense. To accomplish this goal, we introduce a

di�erent measure tailored to the special structure of the

signal set S. We propose to use the modi�ed de
ection

as the measure. Once the representation subspace G

has been designed, the test statistic is as simple as (6).

2.2. De
ection and modi�ed de
ection

Since the modi�ed de
ection is a modi�ed version of

the de
ection [4], we �rst introduce the de
ection mea-

sure.

De
ection. The de�nition of the gap metric applies

only when both S and G are subspaces. If one of them,

S or G, is not a subspace but a general set, we have to

use a di�erent measure called de
ection [4]. Assuming

that S is a set in L2 and G is a subspace in L2, the

de
ection between S and G is given by

�̂(S;G) = sup
u2SS

dist(u;G) (7)

where

dist(u;G) = inf
v2G

k u� v k2 (8)

SS is the unit sphere of S and dist(u;G) is the distance

from u to G.

Modi�ed de
ection. When the set S has random

elements, we need to modify the de
ection measure.

Assuming that S is a set with random elements and G

is a subspace, the modi�ed de
ection between S and G

is de�ned as

�̂mod(S;G) = sup
�
Efdist2(u;G)g

	1=2
(9)

where Ef�g is the expectation, taken with respect to u,

and the supremum is subject to

Efk u k
2
2g = 1 (10)

Both the de
ection and the modi�ed de
ection are

one-side measures, i.e., they can only determine how S

is \included" in G, but not vice versa. Speci�cally, if

the modi�ed de
ection between S and G is zero, then

the modi�ed de
ection between S and any subspace

that includes G is also zero. What we really need to �nd

is the \smallest" subspace that can minimize the mod-

i�ed de
ection between S and G. The question is how

to quantify the term \smallest". With the multiresolu-

tion subspaces, our problem is reduced to �nding the

lowest resolution/scale subspace that can minimize the

modi�ed de
ection between S and G.



3. MULTIRESOLUTION SUBSPACE

DESIGN

Our goal is to �nd the lowest resolution/scale subspace

that minimizes the modi�ed de
ection between S and

G. In other words, we want to �nd the multiresolution

subspace

Gj =

(
+1X

n=�1

2j=2�ng(2
jt� n); �n 2 RI

)
(11)

to minimize the modi�ed de
ection between S and Gj

with the smallest index j. We call the function g(t)

the generating function. With the subspace structure

given in (11), the subspace design problem is reduced

to a functional design problem. We only need to de-

sign the generating function g(t). In this paper, we

restrict the generating function g(t) to be a compactly

supported orthonormal scaling function. In [5], the au-

thors showed that all orthonormal scaling functions of

support 2M � 1 are parameterizable by choosing just

M � 1 parameters, (�1; �2; � � � ; �M�1), over [0; 2�]
M�1.

We will use this parameterization in our design algo-

rithm to perform the optimization.

Solving the minimization problem directly is di�-

cult. Instead, we solve the design problem in two major

steps. In the �rst step, we design the generating func-

tion g(t) to minimize the modi�ed de
ection between

an integer shifted signal set Sint given by

Sint =

(
+1X

n=�1

�ns(t� n); �n 2 RI

)
(12)

and Gj .

In the second step, we reshape the optimal generat-

ing function g�(t) obtained from the �rst step to make

it nearly shiftable [6]. The following is the subspace

design algorithm

1. Parameterize the generating function g(t) using

the parameterization given in [5];

2. Find the generating function g�(t) and the scale

index j� such that, for a given error threshold �,

�̂mod(Sint;Gj�) < � and �̂mod(Sint;Gj��1) > �;

3. Reshape g�(t) to make it nearly shiftable using

Benno and Moura's algorithm given in [6].

Items 1 and 2 together form the �rst step. In step 1

of our design algorithm, we want to �nd a subspace Gj

such that �̂mod(Sint;Gj) < � and j is as small as possi-

ble. The following theorem provides a way to compute

the modi�ed de
ection �̂mod(Sint;Gj).

Theorem 1 Let Sint be the set given by (12) and Gj =

f
P

n 2
j=2�ng(2

jt� n)g where g(t) is a compactly sup-

ported orthonormal scaling function. Then the modi�ed

de
ection between Sint and Gj is given by

�̂mod(Sint;Gj) =
r
1� inf

f2[0;1)
C(f) (13)

where C(f) is P
1

m=1 �
2
mC

m
hg(f)P

1

m=1 �
2
m

P+1
n=�1 jFhm(f + n)j2

(14)

The functions fCm
hg(f);m = 1; � � � ;1g are given by

2j�1X
k=0

�����
+1X

n=�1

Fhm(f + 2jn+ k)F�

g (2
�jf + n+ 2�jk)

�����
2

(15)

where fhm(t);m = 1; � � � ;1g and f�2m;m = 1; � � � ;1g

are the eigenfunctions and eigenvalues of the autocor-

relation function K(t; u). Fhm(f) and Fg(f) are the

Fourier transforms of hm and g(t) respectively. F�

g (f)

is the complex conjugate of Fg(f). The in�mum is

taken over the regions where the function C(f) is con-

tinuous.

Despite the formidable appearance of equation (14),

it is very easy to compute. The terms on the numera-

tor fCm
hg(f);m = 1; � � � ;1g are essentially the discrete

time Fourier transform (DTFT) of the downsampled

autocorrelation sequences

Rj
m[l] =

+1X
k=�1

cjm[k]c
j
m[2

j l + k] m = 1; � � � ;1 (16)

The sequences fcjm[k]; m = 1; � � � ;1g are given by

< hm(�) ; 2
j=2g(2j � �k) > m = 1; � � � ;1 (17)

which consist of the orthogonal projection coe�cients

of fhm(t); m = 1; � � � ;1g on the subspace Gj .

4. EXPERIMENTAL RESULTS

We test the performance of our new receiver using a

database of whale sounds and compare it with some

other alternative receivers. The database consists of 50

realizations of whale sounds. We separate the database

into two sets: a training set and a testing set. The

training set is used to estimate the autocorrelation func-

tion of the signal s(t) and the testing set is used to test

the performance. The whale sounds in the database are

not multipath signals. We simulate the multipath e�ect



by generating the channel parameters using a random

number generator.

We use the algorithm described in section 3 to de-

sign the generating function of the representation sub-

space. Two parameters: [�1; �2] 2 [0; 2�], are used.

We choose two parameters because in our simulation,

it provides a good tradeo� between the computational

complexity and the performance. The optimization is

done by computing the modi�ed de
ection for �k =

2�l=50; k = 1; 2, l = 0; � � � ; 49 and �nding the �� =

[��1 ; �
�

2 ] that leads to the minimum value of the mod-

i�ed de
ection. The optimal scaling function g�(t) is

reconstructed using ��. Then we reshape it to make it

nearly shiftable.

Then, we test the performance of our receiver with

the reshaped optimal generating function. The number

of paths K is set to 8. For simplicity, we set all atten-

uation factors f�kg to be equal to 1. The set of delays

f�k; k = 1; � � � ; 8g are generated by a random number

generator. A total of 100 delay patterns are generated.

Fig. 1 shows the average detection probability PD
as a function of the signal-to-noise ratio (SNR). The

average is taken over all the testing samples and all

the delay patterns. The false alarm probability PF is

�xed at 0.01. There are 5 curves in the �gure. The

solid line is obtained by assuming perfect knowledge

about the transmitted signal s(t), the number of paths

K, and the delays f�kg. It is an over optimistic per-

formance bound. The dashed line is our new receiver.

The dashdotted and the dotted line represent the cor-

relator receiver and the \Matched Filter with Integer

Shifts" MFIS receiver [1] respectively. The \+" curve

represents the energy detector.

Since the transmitted signal is random, the correla-

tor receiver correlates the received signal with the most

signi�cant eigenfunction of K(t; u). The MFIS receiver

matches the received signal with integer shifts of the

most signi�cant eigenfunction of K(t; u) and uses the

sum of the magnitude square of the matching coe�-

cients as the test statistic.

Fig. 1 shows that our receiver provides an average

gain of about 3:0dB over the correlator receiver, a gain

of about 1:4dB over the MFIS receiver and a gain about

2:5dB over the energy detector. Since delay patterns

are chosen so that the delayed replicas of the trans-

mitted signal have considerable overlap, the correlator

receiver performs very poorly.

5. SUMMARY

In this paper, we develop a robust signal detector for

multipath channels when the transmitted signal is ran-

dom. Our approach is based on a geometric interpreta-
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Figure 1: The average detection probabilities, K = 8,

PF = 0:01. The solid line is a performance bound,

\��" is the new receiver, \�:" is the correlator re-

ceiver, \� � �" is the MFIS receiver, and \+" is the en-

ergy detector.

tion of the multipath detection problem. The new test

statistic is the energy of the orthogonal projection of

the received signal on a multiresolution representation

subspace. The representation subspace is designed to

match the multipath signal set. A new measure, the

modi�ed de
ection, is proposed to compare the signal

set with the representation subspace. Simulation re-

sults show the improvement in performance over the

traditional correlator receiver, the MFIS receiver and

the energy detector.
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