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ABSTRACT

It is not possible, in practice, to precisely model a complex
propagation channel, such as shallow water. This lack of
accuracy causes a deterioration in the performance of the
optimal detector and motivates the search for sub-optimal
detectors which are insensitive to uncertainties in the prop-
agation model. We present a novel, robust detector, which
measures the degree of spatial-stationarity of the received
�eld, exploiting the fact that a signal propagating in a
bounded channel induces non-spatial-stationarity. The per-
formance of the proposed detector is evaluated using both
simulated data and experimental data collected in the Medi-
terranean Sea. This performance is compared to those of
three other detectors, employing di�erent extents of prior
information. It is shown that when the propagation channel
is not completely known, as is the case of the experimental
data, the novel detector outperforms the others. That is,
this detector couples good performance with robustness to
propagation uncertainties.

1. INTRODUCTION

Detection of a signal in noise is a classic problem with ap-
plications in many �elds. The optimal procedure, i. e., the
likelihood ratio test, can only be applied when the joint
probability density function (pdf) of the received signal and
noise are known. This, in turn, requires perfect knowledge
of the propagation channel. Shallow water, however, is an
example for a propagation channel that is, in practice, too
complex to be fully characterized. It is therefore necessary
to revert to sub-optimal methods relying on lesser degrees
of prior knowledge of the propagation channel. In this work,
we compare the performance of four detectors that employ
di�erent extents of such information. These detectors range
from the optimal two-sided maximum-likelihood detector to
the simple and robust energy-detector. In particular, we
study a novel detector �rst suggested in [2].

This detector is based on the following condition: if
a �eld is spatially-stationary, then the generating sources
must be uncorrelated and located in the far �eld zone.
Propagation of a signal in a bounded channel, such as an un-
derwater one, causes correlative echoes of the source (multi-
path) to reach the receiver, thereby violating this condition.
These echoes increase the level of non-spatial-stationarity of
mere underwater background noise. This, then, is the mo-
tivation for using the level of spatial-stationarity as a mea-
sure for the existence of a source. It is apparent that for

such a detector the only prior information assumed is that
the propagation channel is bounded, and that the additive
noise is of a low degree of non-spatial-stationarity. That is,
the exact nature of the propagation channel, is of no direct
importance, thus, we expect the proposed detector to be
robust to channel uncertainties.

In order to compare the performance of the station-
arity-based detector, as well as the other detectors, we used
both simulated data and experimental data. The simula-
tions were carried out on one of the benchmarks (\genlmis")
used in the May 1993 NRLWorkshop on Acoustic Models in
Signal Processing [7]. Experimental results were obtained
by processing experimental data collected in the Mediter-
ranean Sea by the NATO SACLANT Center [4].

We proceed next with a formulation of the detection
problem. A brief1 description is then given for the novel
spatial-stationarity detector and the three other detectors.
Simulation and experimental results are presented, followed
by a discussion.

2. PROBLEM FORMULATION AND

DEFINITIONS

Consider a stochastic, temporally-ergodic, temporally-sta-
tionary, �eld, y(t;X). t denotes the time coordinate andX
is a vector representing a point in a spatial coordinate sys-
tem. The �eld is assumed to exist in a horizontally-bounded
channel, and is spatially sampled using a uniform verti-
cal array of P sensors located at known depths fXpg

P
p=1.

The �eld is also assumed narrow-band, and is temporally
sampled at L instants, ftlg

L�1
l=0 , so that the temporal sam-

ples at di�erent l's are uncorrelated. Denote for brevity:
y(l; p) = y(tl;Xp) and y(l) � [y(l; 1); : : : ; y(l; P )]T With
these available tempo-spatial samples, we confront the clas-
sical detection problem in which a decision must be made
between the following two hypotheses:

H0 : y(l) = noise only
H1 : y(l) = signal + noise:

(1)

Under both hypotheses, y is assumed zero-mean with a spa-
tial covariance matrix de�ned as:

[Covy]p1;p2 = Covy(0; p1; p2) � E fy(l; p1)y
�(l; p2)g (2)

where the independence of l is due to the temporal-station-
arity of y.

1Detailed descriptions and analyses of these detectors are
given in [3].



The hypotheses (1) are only vaguely de�ned. This en-
ables us to pose variations of these hypotheses for each
considered detector, underlining the particular principle on
which it is based. The only common assumption for all
detectors is that the signal, s, and noise, n, are temporally-
stationary, zero-mean, independent processes. The spatial
covariance matrix of the noise is de�ned as:

[Covn]p1;p2 = Covn(0; p1; p2) � E fn(l; p1)n
�(l; p2)g : (3)

3. THE PROPOSED DETECTOR

The proposed detector is based on a test for spatial-sta-
tionarity proposed in [2]. This test is in fact a weighted

energy test, where by weighted refers to extracting the non-
spatially-stationary part of the received �eld. The appli-
cation of this test to the decision problem (1) is based on
the fact that the existence of sources in a bounded prop-
agation channel increases the non-spatial-stationarity level
of the �eld. If the non-spatially-stationary part of the ad-
ditive noise is su�ciently low, we expect that the level of
non-spatial-stationarity would serve as a good measure for
the existence of a source. We can therefore restate the hy-
potheses problem (1):

H0 : The �eld is spatially-stationary to a low (or, to a
known arbitrary) degree.

H1 : The �eld is highly non-spatially-stationary.

Extracting the non-spatially-stationary part of the sam-
pled signal is achieved via the second-order Spatial Cumu-
lant-Spectrum (SCS):

SCSy(�1; �2)

�

1X
p1;p2=�1

Covy(0; p1; p2)e
�j(p1�1+p2�2) (4)

where Covy(0; p1; p2) has been de�ned in (2), and � de-
notes a spatial angular frequency [5]. The spatial cumu-
lant-spectrum is well de�ned for any �eld. Theoretically,
however, when spatial-stationarity holds, SCSy(0; �1; �2)
vanishes identically (e. g., [1]) for �1+�2 6= 0. In the prac-
tical case, when only P spatial samples are available, we ex-
pect the spatial cumulant-spectrum matrix, [SCSy]�1;�2 =

SCSy(�1; �2), to be nearly diagonal2. We therefore intu-
itively de�ne the non-spatially-stationary part of the �eld's
energy as the sum of the magnitude-square of all the non-
diagonal elements. This measure is thus proposed as a basis
for deciding H0 or H1.

The following portrays the algorithm for this detector:

1. Estimate the second-order spatial covariance matrix
(y is temporally ergodic):

dCovy =
1

L

L�1X
l=0

y(l)yH(l): (5)

2In fact, the �nite number of spatial samples introduces a
certain leakage from the diagonal to the non-diagonal elements of
the spatial cumulant-spectrum matrix. This leakage is assumed
to be negligible in comparison to the diagonal elements.

2. Estimate the second-order spatial cumulant-spectrum
matrix:

h dSCSyi
�1;�2

= dSCSy(�1; �2) =
PX

p1;p2=1

e
�j(�1p1+�2p2)

h dCovyi
p1;p2

: (6)

3. Form the test statistic as the sum of the magnitude-
square of the o�-diagonal elements of (6), and per-
form the test:

� =
X
i6=j

����
h dSCSyi

�i;�j

����
2 H1

>

<

H0


: (7)

where the threshold 
 determines the probability of
\false alarm", Pfa.

The test procedure has been well de�ned without any infor-
mation on the distribution of the received signal. However,
to �x 
, the distribution of the noise (H0) is required

3.

4. THE ALTERNATIVE TESTS

It is instructive to compare the proposed novel detector
to others that combine di�erent degrees of computational
complexity, a-priori assumptions and performance. In par-
ticular, we selected an energy detector (ED), a one-sided
likelihood ratio test (LRT1), and a two-sided generalized
likelihood ratio test (GLRT2).

The energy detector (ED) uses a simple comparison of
the measured energy of the received signal to a threshold:

�0 = trace

� dCovy�
H1

>

<

H0


0: (8)

where dCovy is de�ned in (5). The test statistic is thus
ignorant of any prior information. However, as in the case
of the novel detector, setting the threshold, 
0, requires
knowledge of the distribution of the noise (H0).

The next detector is a one-sided likelihood ratio test
(LRT1) which accepts or reject the noise-only hypothesis.
To avoid full speci�cation of the distribution of the ocean
noise (usually unknown),H0 is only speci�ed in terms of the
spatial covariance matrix of the noise (can be estimated in
practice). The null hypothesis is thus de�ned:

H0 : Covn = �n; �n is known.

To perform the test, dCovy is obtained via (5), and its ele-

ments are strung in a vector, v =
�
v1

T ;v2
T
�
, where v1 con-

tains the diagonal elements and v2 contains the o�-diagonal
elements. v is then tested to posses its predetermined mean
and covariance under H0.

3An example derivation for the distribution of �jH0
is shown

in [3]



For example, when the noise process is Gaussian, �n =
�2nI, the sample mean and covariance can be analytically
found, and LRT1 assumes the form:

�1 =
L

�4n

h

v1 � �
2
n1



2 + kv2k
2
i

accept H0
<

>

reject H0


1 (9)

where 1 is an all-ones vector, and 
1 is a threshold that can
be �xed for a given Pfa.

The last test considered, (GLRT2), is a two-sided gen-
eralized likelihood ratio test for the hypotheses:

H0 : y(l) = n(l)
H1 : y(l) = �sg(rs; zs; �)s(l) + n(l):

(10)

g(�) is a known spatial transfer function from the source to
the array, and is dependent on unknown parameters: rs,
the distance of the source from the array; zs, the depth
of the source; and �, parameters characterizing the prop-
agation channel. g(�) is normalized so that �2s is the un-
known total signal power at the array. We assume Gaussian
distributions for the signal and for the noise (zero mean,
Covn = �2nI). Under these assumptions, the detector,
which involves a multi-dimensional search (over rs; zs; �),
becomes:

�2 = min
rs;zs;�

[ln�(y; rs; zs; �)� �(y; rs; zs; �)]
Ho

>

<

H1


2: (11)

�(y; rs; zs; �) �
gH dCovyg
�2
n
gHg and dCovy is de�ned in (5).

5. SIMULATION RESULTS

The four detectors were tested using simulated data. The
propagation model used for the underwater channel is one of
the benchmarks (\genlmis") de�ned in the May 1993 NRL
Workshop on Acoustic Models in Signal Processing [7]. This
model is speci�ed using seven unknown channel parameters
and two unknown source-location parameters. The �eld
in this channel was simulated4 with a narrow band point
source and additive temporally and spatially white Gaus-
sian noise. 1000 frames, each of 100 temporal snapshots of
the received �eld, were obtained by a uniform, vertical ar-
ray of 13 sensors whose aperture is the depth of the water
layer.

The detectors were implemented as described in (7),
(8), (9) and (11). In (11), however, due to the computa-
tional complexity of the required minimization, the param-
eter search was carried over rs and zs (and the used � were
the correct ones). Fig. 1 depicts the probability of detection
(PD) for each detector for di�erent signal-to-noise ratios.
For each detector the threshold was �xed to correspond to
Pfa = 10�3.

6. EXPERIMENTAL RESULTS

In addition to the simulations, we applied experimental
data to the four detectors. The data were collected by the
SACLANT Center in a shallow water area o� the Italian

4Using a normal mode propagation program, KRAKEN [6].

coast in Oct. 1993. A detailed description of the experimen-
tal setup and data may be found in [4]. We were particularly
interested in the data collected on Oct. 27, where a support
ship towed a source away from an array of 48 hydrophones.
The source transmitted in the 160{180Hz frequency band
only 30 seconds out of every 60 seconds. These data were
�ltered, decimated, and grouped into frames, each of 100
complex snapshots (corresponding to 6sec approximately5).

From the available data we obtained 50 frames of noise
only (nk), and 50 frames of signal+noise (sk). The LRT1
and GLRT2 detectors assume that Covn is known. It was
therefore necessary to estimate the noise covariance matrix
so that the data could be pre-whitened for these two de-
tectors. This was done using 5 of the noise-only frames.
Comparing the performances of the detectors at varying
signal-to-noise ratios (snr) was not directly possible because
the sk frames are of a �xed and unknown snr. We there-
fore constructed compound frames, yk, of varying relative

snr's by adding together the remaining 45 signal+noise and
noise-only frames:

yk = sk + (�� 1)nk; k = 1; : : : ; 45:

That is, � controls the relative snr of the compound frames
yk, and 20log(�) measures this relative signal-to-noise ratio.

The 45 compound frames were processed using the four
described detectors. As in the simulated data, the enormous
computational burden involved with the multi-dimensional
minimization in (11) forced us to a concession. Instead of
searching over all unknown parameters, we searched only
over the source's depth and range, con�ning our search to
the approximate locations given in [4]. The rest of the
parameters, however, were taken from [4]: some (depth,
sound-speed pro�le) were measured on the day of the exper-
iment, others, taken from measurements done on previous
occasions in the nearby area. Another limitation we face is
the lack of knowledge of the distribution of the ocean noise.
The detectors' thresholds were therefore obtained by pro-
cessing the noise-only frames, fnkg

45

k=1 and selecting values
matching a false-alarm probability of 1=45. Fig. 2 shows
the total number of detections (of 45 frames) for di�erent
relative signal-to-noise ratios.

7. DISCUSSION

It is instructive to study the simulation results together
with the experimental results. GLRT2, employing informa-
tion on both H0 and H1 is clearly the best detector in the
simulations, where that information is indeed correct. How-
ever, in practice, the propagation model under H1 is only
known to a certain degree, if at all. This fact is demon-
strated in the experimental data where the channel model
is only an approximation (based on measurements and his-
toric data) to the true one. In this case, GLRT2 is seen in
Fig. 2 to have an erratic behavior and its performance is
drastically degraded. In theory, GLRT2 can be improved
by carrying out the multi-dimensional search referred to in
(11). However, this procedure is so computationally de-
manding that we consider it as impractical. We therefore
regard GLRT2's performance in Fig. 1 (where the channel

5Cruising at 3.5kn, the source progressed appx. 10m in 6sec.



parameters are known exactly) as an unreachable bound in
practice, rather than as achievable.

Ranking next in performance in Fig. 1 is LRT1. This
detector assumes knowledge of the noise spatial-covariance
matrix under H0. In the simulations, this information is
indeed accurate. However, in the experimental results, this
covariance is unknown and must be estimated. Using this
estimate the sampled �eld are pre-whitened before applying
LRT1. This procedure introduces mismatches between the
expected noise covariance under H0 and the measured one.
Fig. 2 demonstrates the drop in performance of LRT1 that
occurs in practice due to this mismatch. Indeed, it performs
the worst.

On the other hand, the energy detector that performed
the worst in the simulations (Fig. 1), is not a bad option in
the practical case. This detector assumes no prior informa-
tion at all, hence its poor performance in the simulations.
However, this also makes the ED robust in cases where
the a-priori information is inaccurate. This is illustrated
in Fig. 2, where the ED exhibits a performance correspond-
ing to that of GLRT2.

The proposed, novel detector, is seen in Fig. 1 to have
a comparable performance to those of the energy detector
and LRT1. However, in the practical case of the experi-
mental data, it performs the best (Fig. 2). That is, the
qualitative nature of the assumptions in the novel detec-
tor, i. e., the di�erence in degree of spatial-stationarity, is
enough to grant it both performance and robustness. Note
that in both simulation and experimental results, the novel
detector outperforms the ED. We thus deduce that the en-
ergy of the non-spatially-stationary part of the �eld is a
better indicator for a source in a bounded channel than is
the �eld's total energy.

8. SUMMARY

In selecting a detector one searches for good performance,
robustness, and a low computational complexity. In this
paper, we compared four detectors for a source in shallow
water, in terms of these speci�cations using both simulated
and experimental data. It was demonstrated that GLRT2,
optimal in theory, is not robust to channel uncertainties
and has a heavy computational demand. LRT1, which is
easier to implement is also not robust and its performance
decreases in practice. An easily implemented, novel detec-
tor, based on a test for spatial-stationarity was shown to
have the best overall performance$robustness tradeo�.
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