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ABSTRACT

This paper introduces a new test statistic of Normality
which evaluates the cross covariances between choosen Her-
mite polynomials which are zero under the null hypothesis.
The special form of the test leads to a modi�ed spheric-
ity statistic and we have called it Hermite Normality Test
(SH). We present briey its asymptotical distribution both
under the null and nonnull hypothesis. Large simulations
have been made to compare some speci�c Hermite tests to
three other taken in the litterature. If our test is better for a
lot nonnormal populations but works worse for some other,
the main point is that we de�ned in fact a wide range of
tests which may match di�erent nonnormal distributions.

1. INTRODUCTION

Many tests of normality from various types have been
largely studied in the past �fty years. Mardia [1] has written
a nearly exhaustive paper which collects the most famous
tests of univariate and multivariate normality.
The main purpose of our work is to build a new test of de-
parture from normality using the orthogonality of Hermite
polynomials of gaussian variables. For more information
about Hermite polynomials, refer to the book of Erdelyi
[2].
Our approach which is described in the second section is
to consider �rst a vector of collected Hermite polynomials.
Other works dealing with normality tests based on nonlin-
earities of a gaussian variable can be found in [3]. Then de-
parture from normality means that the covariance matrix
of this vector becomes di�erent from the identity matrix,
which might be written as a sphericity test. It is important
to note that we de�ne a class of tests rather than a sin-
gle one since we may combine di�erent numbers and types
of Hermite polynomials in order to match the speci�c sta-
tistical properties of the underlying nonnormal population.
Some theoretical asymptotical results are also elaborated.
The third section is dedicaced to the simulation study. We
have compared the Hermite normality test to three om-
nibus tests: the D'Agostino test, the Anderson-Darling test
and an omnibus test based on the skewness and the kurto-
sis. We have followed the procedure adopted by Pearson,
D'Agostino and Bowman [4] and apply the di�erent tests to
a wide range of nonnormal distributions. We �nally discuss
the results and precise the natural advantages and possible
extentions of the Hermite normality test.

2. THE HERMITE NORMALITY TESTS

2.1. de�nition

Let x be a standart gaussian variable N (0; 1); we then build
a sample p-variate vector X by applying polynomial non-
linearities of type Hermite up to order p. The normalisation
of that vector gives the following form

X
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Because Hermite polynomials of gaussian variables are or-
thogonals for the expectation, the vector de�ned by (1) is
zero mean and spherical: its covariance matrix � is equal
to the identity. �

� = E [X] = 0

� = V ar [X] = Ip
(2)

A sphericity test was introduced by Mauchly [5] in order to
test if a multivariate normal random vector is spherical or
not. Replacing the normal vector by (1) leads to a modi�ed
sphericity that tests the univariate normality of the variable
x.
Therefore, the following property

� = Ip () x is N (0; 1) (3)

leads to build the Hermite Normality Tests with the statistic
which is de�ned in terms of the sample covariance matrix
R = �̂ of X by

SH
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p

�p (4)

where jRj is the determinant of R and Tr (R) its trace.
The test statistic above de�ned takes its values in the range
0 � SH � 1 and is asymptotically equal to 1 under the null
hypothesis. It has then to be compared with a threshold
between 0 and 1 to decide whether the tested sample is
normal or not.

SH
>
<
H0

H1
� � 2 [0; 1] (5)

Hence, this de�nes a class of tests of departure from nor-
mality since we can choose the size of the vector X and the
Hermite polynomials contained in the vector; for instance,h
H1 (x) ;

1p
6
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i>
de�nes a speci�c test S

(1;3)

H .



2.2. asymptotical performances under H0

Many works have been achieved on the sphericity test when
the underlying sample vector is N (�;�), see [6] and in a
recent paper [7] Mokkadem applies the sphericity to test
the whiteness of regular time series which are not necessary
normal.
Its asymptotical distribution is known because of some re-
sults on the Wishart distribution of the sample covariance
matrix of a mutivariate normal process. But when the
spherical vector is nonnormal - our case - its sample co-
variance is not distributed as Wishart and the distribution
of SH is not known.
We then have to make use of limit theorems to �nd the
asymptotical distribution of the Hermite Normality test.
Starting from Borovkov work [8], we have proved the fol-
lowing statements both under the null hypothesis and the
alternative one :

theorem 1 if x�= N (0; 1), the Hermite Normality statistic
has the limit distribution
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where the �ij are normaly distributed with zero mean and
covariance matrix depending on the Hermite polynomial de-
grees.

theorem 2 if x�= f(x) is nonnormaly distributed, we have

SH
a:s:�! mH1

and p
N(SH (x)�mH1

)�) �

where � is centered normal with variance �H1
.

The value of the indeterminates mH1
and �H1

are directly
linked to cumulants of the nonnormal distribution and the
degrees of the Hermite polynomials considered.

The proofs of those theorems can be found in [9] with the
expressions of the indeterminates. SH is then asymptot-
ically distributed as a quadratic form of centered normal
variates with a 1

N
rate of convergence under H0, when it is

centered normal with a rate in 1p
N

under H1.

3. SIMULATIONS

3.1. Comments on our approach

Extensive studies have been achieved for the comparison
of power of various tests [1] [4] [10]. Therefore, we have
choosen to apply the nonnormal populations only to three
tests except the Hermite normality ones:
(i) one based on the empirical distribution function (EDF),
namely the Anderson-Darling test A2,
(ii) the D'Agostino D test which depends on order statistics
[11]
(iii) and �nally an omnibus test K2 based on the third an
fourth order cumulants proposed by D'Agostino and Pear-
son [12].
These statistics are completely described in [13].
We now apply the four omnibus tests for 22 nongaussian

populations of length N at the 100"% level of signi�cance,
that is to say " is the false alarm probability under the
gaussian hypothesis.

" = ProbfSH (x) < � = H0g

All the alternative distributions are well known [14] ; S�S
is a symetric �-stable law and means for generating such a
variate are described in [15]. We have gathered the distri-
butions that are far from the gaussian density in table 2 to
apply the tests on small samples (N = 20), the ones which
are close to the normal in table 4 with N = 100 because
for smaller sample sizes, the powers were too meaningless,
and the other were considered with moderate sample sizes
(N = 50).
In order to evaluate the powers of the tests, we count - for a
particular alternative - the number of samples for which the
value of the test lay beyond the 100"% level quantiles from
a normal distribution. For that purpose, table 1 gives the
5% level quantiles (�) of six special Hermite normality tests
for N = f20; 50; 100g estimated with 500000 trials. More
complete tables will be availiable in future papers.
We have considered 5000 samples of each nongaussian popu-
lation and the total count divided by 50 gives the estimated
power of each test for the di�erent alternatives.
The same procedure was carried out at levels " 2
f0:01; 0:05; 0:1g each for N = f20; 50; 100g, but for obvious
reasons of space, we present on tables 2-4 only the results
at the 5% signi�cance level.

3.2. Discussion of the results

First of all, we want to justify the choice of the alternative
tests considered.
Our intention was to pick up one of the most powerfull
omnibus test out of three di�erent classes. The comments
made in [1] and [4] lead us to do this choice. we could have
replaced A2 by the famous Shapiro-Wilkes W test, but Dyer
[16] consider that they have nearly similar power.
For each nonnormal population within tables 2-4, we pre-
cise their normalised moments in order to quantify their
distance from the normal distribution8<

:
p
�1 =

r
�2
3

�3
2

= 0 if x�= N (0; 1)

�2 =
�4
�2
2

= 3 if x�= N (0; 1)

where �i are the moments about the mean.
To ease the analysis of the results, we have emphasized the
most powerfull test in bold.
Our aim is to not compare the alternative tests together,
but with the six Hermite normality tests considered. We
note although that the Anderson-Darling test is better for
skewed alternatives when for symmetrical nonnormal alter-
natives, K2 is more powerfull for platykurtic populations
(�2 < 3) and D for leptokurtic ones (�2 > 3).
It can be noticed, in the ligth of the results in table 2 that :

� concerning the whole Hermite normality test for sym-
metrical populations, SH performs better for platykur-

tic than for long tail ones since S
(1;3)

H and S
(1;2;3)

H are
the most powerfull while �2 � 3. On the contrary,



N S
(1;2)

H
S
(1;3)

H
S
(1;8)

H
S
(2;3)

H
S
(2;4)

H
S
(1;2;3)

H

20 0:6180 0:2437 0:4355 0:4143 0:1253 0:1508

50 0:8017 0:4893 0:5617 0:4936 0:1975 0:3212

100 0:8872 0:6560 0:6389 0:6005 0:2985 0:4753

Table 1. 5% quantiles of the Hermite normality SH test

population
p
�1 �2 A2 K2 D S

(1;2)

H
S
(1;3)

H
S
(1;8)

H
S
(2;3)

H
S
(2;4)

H
S
(1;2;3)

H

symmetrical

beta(0:5; 0:5) 0 1:5 64 71 1 63 78 4 1 2 87

SB ( = 0; � = 0:5) 0 1:63 38 57 0 39 69 4 0 2 69

t (� = 1) 0 � 83 79 84 73 58 63 71 45 72

skewed

�2 (� = 2) 2 9 78 52 52 84 12 34 39 10 60

lognormal 6:2 114 90 74 76 93 29 51 59 25 79

S�S (� = 0:5) � � 100 98 100 94 90 84 90 72 96

Cauchy : S�S (� = 1) � � 77 74 78 69 54 60 69 43 69

Table 2. Estimation of power based on 5000 samples of size N = 20 for " = 0:05

population
p
�1 �2 A2 K2 D S

(1;2)

H S
(1;3)

H S
(1;8)

H S
(2;3)

H S
(2;4)

H S
(1;2;3)

H

symmetrical

uniform(beta(1; 1)) 0 1:8 60 87 58 59 95 28 0 59 90

Tukey (� = 2:5) 0 1:9 38 73 56 37 89 32 0 64 74

Laplace 0 6 55 45 60 37 26 25 33 14 36

t (� = 4) 0 14 44 48 54 43 33 31 40 24 43

t (� = 2) 0 � 89 85 92 79 74 66 67 58 78

skewed

SB ( = 1; � = 1) 0:7 2:9 71 34 13 80 7 36 18 2 71

�2 (� = 10) 0:9 4:2 50 43 26 65 14 26 41 11 53

Erlang (� = 2) 1:42 6 90 75 58 96 28 43 64 21 92

Table 3. Estimation of power based on 5000 samples of size N = 50 for " = 0:05

population
p
�1 �2 A2 K2 D S

(1;2)

H S
(1;3)

H S
(1;8)

H S
(2;3)

H S
(2;4)

H S
(1;2;3)

H

symmetrical

beta(2; 2) 0 2:1 33 72 72 31 90 50 0 86 59

SU ( = 0; � = 3) 0 3:5 11 15 17 14 10 5 15 7 15

logistic 0 4:2 25 31 38 27 22 10 25 13 28

skewed

beta(2; 3) 0:3 2:4 41 46 31 48 44 52 1 29 51

Weibull (k = 2) 0:6 3:25 62 53 14 80 13 37 47 8 75

S�S (� = 1:7) � � 76 83 85 81 79 65 74 72 81

S�S (� = 1:9) � � 29 40 39 38 37 28 39 33 41

Table 4. Estimation of power based on 5000 samples of size N = 100 for " = 0:05



the Hermite normality test seems to work rather bad
for very long tail populations as it can be seen for the
logistic, the cauchy or the student0s t distributions.

� for the skewed distributions, SH - and specially S
(1;2)

H

- is almost ever the most powerfull, but its domina-
tion decreases as much as the tails of the concerned
population becomes heavier.

� we moreover remark that S
(2;3)

H
and S

(2;4)

H
never sur-

passes the other tests, and we deduce that the use of
H1 in the construction of the test is decisive ; which
may be explained by the fact that the normalisation
of the samples to be tested forces the �rst term of the
matrix R to 1 and tends to make the statistic more
robust.

� The best advantage of the Hermite normality test is
that we make use not of a unique test, but of a complete
class of tests. Therefore, this engage us to say that
for a special alternative, there exists an optimal set
of Hermite polynomials that �t the test to the data.

We can see an illustration in the fact that S
(1;8)

H does
not work particulary well except for beta (2; 3) ; and if

we consider the gathered powers of S
(1;2)

H , S
(1;3)

H and

S
(1;2;3)

H , the Hermite normality test performs best in
13 cases out of the 22 nonnormal population tested.
We are although convinced that other combinations of
Hermite polynomials would perform better than the
tests presented here for each nongaussian distribution.

4. CONCLUSION

We have introduced a new test of normality using the or-
thogonal property of Hermite polynomials weighted by a
gaussian density and present it in the form of a modi�ed
sphericity test. Besides the plenty litterature concerning
this test, the determination of its asymptotical distribution
when we consider a nonnormal multivariate vector present
some di�culties. However, with the use of a limit theorem,
we have proved that the Hermite statistic is distributed as a
quadratic form under the null hypothesis and is normal for
the alternative one. The Hermite normality test has also
been compared with three other tests through a wide range
of nonnormal populations. in addition to the fact that for
a lot of distributions SH seems to be very powerfull, the
leading comment is that one have a complete class of tests
at his disposal and can therefore choose the optimal test for
his job. Our future work will be to �nd the parameters of
the nonnormal distribution that impose the choice of a par-
ticular test, that means to choose the bet set of polynomials
when some prior known upon the datas.
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