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ABSTRACT

This paper introduces a Gaussianity test for causal in-
vertible time series. It is based on a quadratic form in
di�erences between sample means and expected values of
certain �nite memory nonlinear functions of the estimated
innovation sequence. The test has, by construction, an in-
teresting property: under reasonable assumptions on the
regularity of the stationary process, it is asymptotically in-
variant with respect to the spectral density of the process.
Monte-Carlo experiments are included to illustrate the pro-
posed approach.

1. INTRODUCTION

Because of the central role played by the normal distribution
in statistical modeling, it is of importance to be able to test
that a time series is Gaussian. Several contributions have
considered the problem of testing the Gaussianity of a time
series. Frequency domain approaches are mainly based on
the property that higher-order cumulants of jointly Gaus-
sian variables are equal to zero [1, 2]. The advantage of
this approach is that no speci�c parametric model is as-
sumed but it requires large sample size in order to obtain
reliable estimates of the higher-order spectra cumulants. In
the time domain, one typically �nds goodness-of-�t tests
developed for independent and identically distributed (iid)
time series [3] and tests based on quadratic forms in di�er-
ences between sample means and expected values of certain
non-linear functions of the sample [4, 5, 6].
This paper revisits the latter approach applied to causal

invertible sequences under reasonable regularity assump-
tions. We study the convergence of functionals of the (nor-
malized) innovation sequence when estimated by a linear
predictor of order k computed from T samples. We extend
the results of [7] on the asymptotic rates of the prediction
order [7] to obtain limiting distributions of such function-
als. By this approach, tests can be developed which are
asymptotically invariant with respect to the spectral den-
sity of the process. This asymptotic invariance constitutes
the main theme of the present contribution.

2. PRINCIPLE OF AN INVARIANT
NORMALITY TEST

We consider times series fXtgt2ZZ in the form

Xt = �

1X

k=0

 kZt�k;  0 = 1; � > 0; (1)

where fZtgt2ZZ is a sequence of independently and iden-
tically distributed normal variables with EfZtg = 0;

EfZt2g = 1. For a Gaussian time series, and for any
positive integer q, the q � 1 vector

Zt = [Zt; Zt�1; : : : ; Zt�q+1]
T

of normalized innovations is distributed to a N (0; Iq) nor-
mal distribution. Hence, one may construct a Gaussianity
test by combining an estimate of the normalized innova-
tion sequence and a test for the simple hypothesis that Zt

has distribution N (0; Iq). These two issues are considered
separately.
Regarding the normality of Zt, we base our test on func-

tions g : IRq 7! IRl verifying:

Zt � N (0; Iq) ) Efg(Zt)g = 0:

Typically, one may pick up an arbitrary function from IRq to
IRl and subtract its mean value under the N (0; Iq) normal
distribution in order to satisfy the above condition.
The proposed approach consists in testing an empirical

version of Eg(Zt) = 0 using normalized estimated residuals.
Denote �̂(k) a k� 1 vector of linear prediction coe�cients.
The innovation sequence is estimated by

Ŷt = Xt + �̂(k)TXt�1(k); (2)

Xt(k) = [Xt;Xt�1; : : : ;Xt�k+1]
T
:

A normalized innovation sequence fẐtg is then obtained by

Ẑt = �̂
�1
Ŷt; (3)

where �̂
2 =

1

T � L

T�1X

t=L

Ŷ
2
t ; L = k+ q;

from which a vector sequence

Ẑt = [Ẑt; Ẑt�1; : : : ; Ẑt�q+1]
T

is formed and the l� 1 vector UT is computed:

UT =
1p
T � L

T�1X

t=L

g(Ẑt); (4)

which is an (appropriately normalized) empirical version of
Eg(Zt). The proposed test statistic, denoted �T , is con-
structed in three steps:

1. Compute a k-th order linear predictor �̂(k).
2. Estimate and normalize the innovation sequence ac-

cording to (2) and (3).



3. Compute the test statistic �T = UT
T �

�1
g UT with �g the

asymptotic covariance matrix of UT .

The strength of the residual based approach is that, un-
der reasonable regularity conditions, the asymptotic distri-
bution of UT does not depend on the correlation of fXtg
but only on the choice of a particular function g(�), hence
the quali�cation of `asymptotic invariance'. It follows in
particular that for a given function g, matrix �g can be
computed once for all, independently of the data set.
To implement such a test, one must specify a procedure

for estimating the prediction coe�cients, the prediction or-
der k and �nally a particular function g. We provide below
the detail of the estimation of the linear predictor.
The best (in the mean square sense) linear predictor of

order k, denoted ~�(k), minimizes the prediction error vari-
ance of Ef(Xt+1 +Xt(k)T�(k))2g. Denote the autocovari-
ance coe�cients by r(�) = EfX0X�g and denote R(k) the
covariance matrix of vectorXt(k). The vector of coe�cients
~�(k) is then given by:

R(k)~�(k) = � EfXt+1Xt(k)g: (5)

The estimated kth order prediction coe�cients is denoted
�̂(k) and is obtained as the solution of R̂(k)�̂(k) = �r̂(k),
where

R̂(k) = (T � k)�1
T�1X

t=k

Xt(k)Xt(k)
T
; (6)

r̂(k) = (T � k)�1
T�1X

t=k

Xt(k)Xt+1:

3. ASYMPTOTIC INVARIANCE

3.1. Assumptions

Our working assumptions will be the following

H 1 	(z) =
P
1

k=0
 kz

k is bounded and bounded away from

zero on the disc jzj � 1.

As shown by Akutowicz [8], this is equivalent to assuming
that fZtg has a causal representation

Zt = �
�1

1X

k=0

�kXt�k; �0 = 1; (7)

where �(z) =
P
1

k=0
�kz

k = 1=	(z) is bounded and
bounded away from zero on jzj � 1. An important quantity
regarding convergence rates is

�k =
X

l=k+1

�
2
l : (8)

H 2 With probability 1, R̂(k) > 0 for T > k.

H 3 The fourth-order moment of Zt is bounded, i.e.
EfZ4

t g <1.

H 4 One can �nd k such that k = o(
p
T ) and

p
T �k =

o(1).

This means that convergence results are obtained by as-
suming some spectral regularity (so that �k decreases fast
enough) and letting the prediction order k increases with
the sample size T .

H 5 Function g is twice continuously di�erentiable and its
second derivatives are uniformly bounded : j@2gu=@zi@zj j �
M <1 for 0 � i; j � q � 1, 0 � u � l � 1.

H 6 The fourth order moments of gu(Zt) (0 � u � l � 1)
and of the partial derivatives of g evaluated at Zt are upper
bounded: Efgu(Zt)

4g <1 and Ef(@gu(Zt)=@zi)
4g <1.

3.2. Main results

The convergence of �̂ to � can be characterized by de�ning
a (q � 1)� 1 vector s = [s1; : : : ; sq�1]

T :

si
def
=

q�1X

j=1

 i�j(�̂j � �j); i = 1; : : : ; q � 1;

which admits the following invariant asymptotic equivalent:

Theorem 1 If H1-4 hold, then, for all q > 1:

s = � 1

T

TX

t=1

Zt(q � 1)Zt+1 +OP (�k + kT
�1) (9)

where Zt(q � 1) = [Zt; Zt�1; : : : ; Zt�q+2]
T .

In a next step, we look for an invariant asymptotic equiv-
alent of UT . Consider the Taylor expansion of g at Zt:

g(Ẑt) = g(Zt) +Dg(Zt)(Ẑt � Zt) + oP (kẐt � Ztk); (10)

and de�ne

An

def
= EfDg(Zt)Zt�ng (11)

where the expectation is under the N (0; Iq) distribution.
The modi�ed function:

~g(Zt) = g(Zt)� a
T
zt;

a = [
1

2
A0;A1; : : : ;Aq�1]

T
;

zt = [Z2
t � 1; ZtZt+1; Zt�1Zt+1; : : : ; Zt�q+2Zt+1]

T
;

allows to write an asymptotic equivalent of UT as stated in
this theorem:

Theorem 2 (Asymptotic invariance). Under H1-6,

UT =
1p
T � L

T�1X

t=L

~g(Zt) + oP (1):

This establishes the asymptotic invariance of the test statis-
tic UT under the null hypothesis that Zt is a Gaussian time
series since this asymptotic equivalent of UT is a function
of the process fZtg only. It does not depend on the system
since the coe�cients An do not depend on it either but only
on function g.
The term ( 1

2
A0(Z

2
t � 1)) stems from the estimation of

�2. The other terms of aTzt appear when the function g
depends on q > 1 values of the estimated innovation.
Finally, we can establish an asymptotic normality:

Theorem 3 (Asymptotic normality). Under assump-
tions H1-6, the (l � 1) random vector UT is asymptoti-
cally Gaussian with zero mean and covariance matrix �g:
UT ! N (0;�g) with

�g =

q�1X

�=�q+1

Cov(~g(Z� ); ~g(Z0)): (12)



Again, the covariance matrix does not depend on the system
but only on function g. The proof of theorems 1 and 2 is in
[9]. Theorem 3 is obtained by a central limit theorem for
m-dependent processes [10].

4. NUMERICAL EXPERIMENTS

We compute the test statistic �T = UT
T �

�1
g UT based on the

function g : IRq ! IRl; q = 2; l = 8 given by:

gi(Ẑt) = cos(�iẐt)� exp(��i�
T
i

2
); i = 1; : : : ; l;

where �i is a (1 � q) vector of arbitrary coe�cients. We
de�ne by �, a (l � q) matrix which lines are given by �i.
Function g veri�es H5-6 and we �nd

~gi(Zt) = gi(Zt; �i)� 0:5A0;i(Z
2
t � 1)� A1;iZtZt+1;

where A0;i = EfDgi(Zt)Ztg and A1;i = EfDgi(Zt)Zt�1g.
The asymptotic covariance matrix of UT is given by:

f�ggi;j = 0:5 ci;j exp
�0:5(�i�

T
i
+�j�

T
j
)
; (13)

ci;j = exp�(�j;1�i;1+�j;2�i;2)

+ exp(�j;1�i;1+�j;2�i;2)+exp�(�i;1�j;2)

+ exp(�i;1�j;2)+exp�(�j;1�i;2)

+ exp(�j;1�i;2)�6� 2�j;1�j;2�i;1�i;2

� �i�
T
i �j�

T
j ; i; j = 1; : : : ; l:

Since UT is a zero-mean asymptotic Gaussian random vari-
able with covariance matrix �g, �T has a �2 distribution of
l degrees of freedom.
For each experience, the size of the test is set to 0.05,

hence the threshold for a �2(8) distribution is 15:507. We
realize N independent trials for di�erent values of T and
�1 = [1 1], �2 = [1 2], �3 = [1 3], �4 = [2 1], �5 = [2 2],
�6 = [2 3], �7 = [3 1], �8 = [3 2].

4.1. Size of the test

In this experience, we analyse the empirical distribution
of the test under the null hypothesis of Gaussianity. The
processes under consideration are:

� (M1): a zero-mean Gaussian AR(4) process with poles
at 0:9 exp(�j�=3) and 0:95 exp(�3j�=4).

� (M2): a zero-mean Gaussian MA(2) process with ze-
roes at 0:9 exp(�j�=2).

� (M3): a zero-mean Gaussian ARMA(2,2) process with
poles at 0:9 exp(�2j�=3) and zeroes at 0:8 exp(�j�=2).

Fig. (1) shows an excellent match between the empirical null
distribution of the test and the theoretical one. To calculate
the empirical distribution of the test, we use the MA model
and k=40. Fig. (2) shows the empirical distribution of the
test for M2 when k varies. This plot suggests that the null
distribution of the test varies `weakly' with the prediction
order when it is taken large enough. Fig. (3) compares the
empirical distribution for models M1, M2 and M3. It shows
the invariant property of the test under the null hypothesis.
In the next experience, we consider a AR(1) process given
by:

� (M4): Xt = aXt�1 + Zt

where Zt is a sequence of iid unit-variance zero-mean Gaus-
sian variables. We analyse the empirical size of the test for
di�erent values of a.
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Figure 1. Comparison between theoretical `{' and
empirical null `-.' distributions of the test; N=1000;
k=40; T=1024.
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Figure 2. Empirical distribution of the test for M2;
k=30 `{', k=35 `-.', k=40 `- -'; N=1000; T=1024.

a T k = 40 bispectrum [5]
0.9 256 6.8 42 7
0.9 1024 4.8 21 4
0.5 256 6.0 10 5
0.5 1024 5.6 5 4
0 256 5.6 7 6
0 1024 5.2 5 5

-0.5 256 5.6 6 4
-0.5 1024 5.2 6 5
-0.9 256 5.2 49 5
-0.9 1024 4.8 28 5

Table 1: empirical size (%) of the test for M4; N=250.

Table 1 shows that invariance with respect to the spectral
density is reached even with T = 256 samples. We com-
pare the results with the bispectrum test (published in [5])
and with [5]. The bispectrum test is inaccurate when the
autoregressive coe�cient a becomes close to the unit cir-
cle, even when the sample size is T = 1024. On the other
hand, invariant test results are comparable to [5] but our
test o�ers a much easier implementation.

4.2. Power of the test

Non-linear time series.
In this section, we consider four non-linear time series:

� (M5) bilinear: Xt = 0:7 �Xt�2Zt�1 + Zt,

� (M6) non-linear MA: Xt = 0:8 � Zt�2Zt�1 + Zt,

� (M7) extended non-linear MA: Xt = 0:8 � Zt�1 +
Zt�2
P20

j=2
(0:8)j�2Zt�j ,
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Figure 3. Empirical distribution of the test for
M1 '{', M2 '-.' and M3' - -'; N=1000; k=40;
T=1024.

� (M8) threshold AR: Xt = �0:5 � Xt�11Xt�1<1 +
0:4Xt�11Xt�1>1 + Zt,

where Zt are iid standardized random Gaussian variables.
In �g. (4), we plot the probability of detection versus the
probability of false alarm. We compare the results for the
nonlinear models with respect to the null hypothesis (M1).
The test has no di�culty detecting these nonlinear models.
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Figure 4. Detection probability against false alarm
probability. M1: '{', M5: 'o', M6: '- -', M7: '*',
M8: 'x'; N=500; k=40; T=512.

Non-Gaussian linear process.
We analyse an AR(1) non-Gaussian process, with a = 0:95
and the following excitation:

� (M9): Zt is a sequence of iid discrete random variables
taking two values f+1;�1g with equal probability.

For this process, we obtain an excellent power of the test.

models T k = 40 [5]
M9 256 100 97
M9 512 100 100
M9 1024 100 100

Table 2: power of the test (%) against
non-Gaussian linear process; N=500.

Non-additive contamination.
For this example, we generate two AR(1) models with the
same parameter a = �0:9 (M10) but with excitations iid
N(0; 1) or iid N(0; 3). The �rst model is select with prob-
ability 0.9.
As in the previous example, the contamination is easily de-
tected.

models T k = 40 [5]
M10 256 99.6 98
M10 512 100 100
M10 1024 100 100

Table 3: power of the test (%) against
non-additive contamination; N=500.

5. CONCLUSION

This article introduced a time domain Gaussianity test for
causal invertible linear time series. The test is asymptot-
ically invariant with respect to the spectral density of the
process under the linear hypothesis. The principal results
were given without demonstrations. The proof of theorems
will be made available at the conference. Several numer-
ical experiments have shown the good performance of the
test but further characterization is in progress. We plan to
extend this approach to the more challenging problem of
testing the linearity of a times series.
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