Improved Type-Based Detection of Analog Signals
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Abstract for eachhypothesis, we have available a training sequence

Nx—l
,(Lm)} that was measured when thé® model was
When applied to CO’F“”“"“S?“WE‘ observations, YPe- trie. G?v:eon an observation sequen{:En}NfO_1 of un-
based detection strategies are limited by the necessity 19 nowna priori origin, our task is to assignrit_to one of the

crudely quantize each sample. Tp _alleviate this proplem, We, 1 classes with a minimum probability of error.
smooth the types for both the training and observation data
with a linear filter. This post-processing improves detector ~ “Type” is a word used in information theory for the his-
performance significantly (error probabilities decrease by togram estimate of a discrete probability distribution [2,
over a factor of three) without incurring a significant com- Chap. 12]. Given a stochastic sequer{ag };~', each
putational penalty. However, this improvement depends onelement of which is drawn from a finite alphakgt =

the amplitude distribution and on the quantizer's character- {v1,. .., .}, thetype Py (y) of our sequence equals

istics.
ZI(Yn:y)/N, Y=y, .., YL Q)

n

1 Introduction Here I(-) is the indicator function, equaling one when its

) ) . argument is true and zero otherwise.
Type-based detectors provide totally adaptive detection

by obtaining training data, then exploiting those data opti- A type-based detector has an extremely simple structure.
mally to determine bit streams. A preliminary applicationto Given the training data (™) and the observation vectd,
spread-spectrum communication [1] demonstrated the techWe form types of thex(™), of R, and of theconcatenated
nique’s effectiveness and adaptability. In both training and sequencesz(™ = {x{™ . ,XJ(V”;), Ri,...,Rn,}.
reception modes, the type-based detector requires receivedhe types of the concatenated sequences can be expressed
values to be members of a finite set. When continuous-in terms of the component sequences’ types and need not be
valued signals occur, they must be quantized, and our pre<alculated independently:
liminary results have demonstrated effective, but not opti- N N
mal (i.e., that provided by likelihood ratieceivers), de- Py = (NXPX(m) + NRPR) /(Nx + Ngr). (2
tection with 3-bit quantization. We describe here a post-
quantization technique that allows type-based detectors tol he decision rule calculates the test statistic [3]
achieve performance levels closer to optimal. Nx =~ N L
Sm = 7 —D(Pxel|Pzon) + D(PRlPzem)  (3)
2 Type-Based Detection n
for each modein, whereD( P, || P2) denotes the Kullback-
We consider the classicall-ary detection problem of  Leibler distance [4]. Qualitatively, the Kullback-Leibler
deciding between/ different hypotheses. We assume that distances will be small if the observations do coincide with
*This work was supported by the National Science Foundation, grants the model, and large otherwise. Without going into details,

MIP-9457438and NCR-9628236, and the Office of Naval Research, grantthe smaller of the test statistics indicates the decision [1].
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equalto that of the optimal clairvoyant detectorin this

sense, the type-based detector has performance characteriw(t) W Yn histo}iﬂ smooth}—> Py % g

tics guaranteed to mimic those of the optimal. Our simula-

tions indicate that many cases exist where the performance_ ) ~ )

characteristics are virtually identical [1]. Flgure L Computation of a typ@s for the analog signal(t)
involves conversion to discrete-time, quantizatio, tievels, and

. . then computation of a histogram ovlr samples. In a smoothed

3 Type-BaSGd DeteCtlon fOI’ Ana|0g Slgna|S type, we post_procegéy with a linear ﬁ[terg_

One important proviso in using type-based detectors is
thefinite-alphabet requirementln many applications, the b
training data and observations are analog, with continuous-
valued probability density functions (pdfs). Digital pro-
cessing systems employ finite precision A/D converters,
which do produce values drawn from a finite alphabet; how-
ever, as the alphabet size grows (more bits in the A/D con- a
verter), more training data is needed to provide optimal el@)
ror rates [3]. Thus, type-based detectors usually employ
relatively few quantization levels: about 8-16 in most ap- ‘ ‘
plications. Such crude quantization, necessitated by train-
ing requirements, implies that type-based detector perfor-
mance cannot equal that of an optimal detector that uses
analog or full A/D converter values. At best, the ratio of er- ; L ;L T m Jﬁ 7
ror probabilities for the type-based detector and the optimab) a 0 b
one based on full-precision observations equals a constant;

at worst, the error rates do not agree. Figure 2. Types and smoothed types. (a) An IID random se-
When analog observations are quantized with an A/D quence’” with Gaussian pdf. (b) Typ€(Y') (bars) and smoothed

converter, the type computed from them is reallyia- type P(Y) g (stems) ofy’. The smoothed type was obtained by

togram estimatef the pdf of the underlying analog ran- convolving the type with a 3-point boxcar lowpass filfeDetec-

dom process. Histogram estimates are very simple, but pro_tlon performance with the smoothed type is superior to that with

vide only crude approximations of the true underlying pdfs. the original type.

Histogram estimates are a special caskeofel density es-

timates. Kernel estimates typically outperform histogram

estimates in the sense of integrated-mean-square error [5kernel estimate amounts to smoothing, then quantizing.

Th_is realization might suggest_ a pre-processing approach |, o approach, we automatically set the size of the
to improved type-based detection of analog data: ConStrUthuantization bins (an automatic gain control) using the

more accurate density estimates of tlerlying pdfs —  «nqrmq) reference rule” of Scott [5] for optimal histogram
with a kernel smoother, for example — then sample the es'density estimation

timates to yield the types. Arelated approach would employ

wavelet smoothing methods [6] for the density estimate. In B = 355 N3 (4)
either case, obtaining the pdf estimates is computationally

expensive and can only be justified if the sampled estimategHere, o is the sample variance of thé observations. Af-

yield dramatic detector performance improvements. ter constructing a type of the data, we regard the type as a
discrete-time signal and smooth it through convolution. We

A simpler option is post-processing. Can we perform have retained A/D converter quantization of only 2 to 6 bits

processing on the quantized ol_Jservations to imprqve per-(4_64 equally-saced levels) and employed sampled Gaus-
formance? Our approach here isstmooth the type with a sian smoothing functions.

digital lowpass filteressentially allowing data of surround-

ing quantization bins to influence the probability estimate in 4
each bin. (See Figures 1 and 2.) While in the same spirit as
a kernel density estimate, this approach is not in that class.
Our approach quantizes then smoothes, whereas sampling a

Computational Complexity

It is important to note that the smoothed type-based de-
ctor is only slightly more expensive (one small convolu-

1A clairvoyant detector somehow knows the exact probabilistic model tiOﬂ) than a simple typ_&based de_teCton and therefore it is
and uses it to implement the optimal likelihood ratio detector. suited to real-time application at high data rates.
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In Figure 4, we demonstrate the effectiveness of smooth-
1 ing with three different noise distributions: Gaussian,

0450 SRRAAL RIS A
oal | Laplacian, and a mixture composed of 99% Gaussian + 1%
I I Cauchy. In each case, the probigpof error decreases with
] I 7 smoothing, up to a maximum of about 3.5 times.
g o
i o8 B e e il S Al S While simple and data-adaptive, the Scott rule (4) for
%0 251 ] setting the histogram bin widths is suboptimal with respect
g 02l 7% # samples = 8 — to the probability of error. In Figure 5, we show the per-
50.157 \b e zz::g::zg‘s‘e | formance of a smoothed type-based detector where the bin
o widths were chosen using a rule of Kelly [7] that requiaes
o1r e O AU © priori knowledge of the underlying pdfs. It is interesting to
0.05} s note that even in this case, we can improve the performance
. ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ of this type-based detector by smoothing.
0 5 10 15 20 25 30 35 40 45 50

smooth length Caveat: We have found that smoothing does not im-
prove performance in all detection scenarios. For example,
smoothing seems to provide no performance gain in the case

Figure 3. Performance of a smoothed type-based detector versusf two different amplitude distributions having equal means

the amount of training data. The detection task was to distinguishand variances. Fortunately, in communication problems we

between two unit-variance Gaussian pdfs shifted in mean by 0.2. typically observe smooth pdfs of the same form but with
Vertical axis gives the probability of errét. based on 1000in-  differing means and/or variances. In our experience, some

dependenttrials; horizontal axis gives the length of the smoothingamount of smoothing has always provided a degree of per-

window. In each experiment, we choSe& = Nr = #samples, formance gain in such scenarios.

which corresponds to the case of minimal training data. The types

were smoothed with a sampled Gaussian window. The result for :

the zero-length window corresponds to that produced by the stan-6 Conclusions

dard type with no smoothing. The performance of the optimal

(matched filter) detector is indicated on the right for each case. We have proposed a type-based adaptive detection algo-

rithm tailored to analog data. The simplicity and robust-
ness of the algorithm makes it suitable for real-time process-
ing in applications. Its key ingredient is a post-processing
Assuming equal amounts of test and training déta= smoothing filter that is applied to each type. Smoothing im-
Ngr = N and an alphabet of siz&, the computational cost  proves the performance of the detector in terms of probabil-
(in multiplies and additions) of buildingach type asin (1) ity of error. Equivalently, for the same error performance,
is O(N). The costs of concatenating the types as in (2) and smoothing allows us to reduce the amount of training data
computing the test statistic (3) are b@#iZ). The cost of  gjgnificantly. In a communications scenario, as in [1], this

smoothing the types i©(M L), with M the length of the  approach would allow for shorter preamble sequences.
smoothing filter. The total cost of the smoothed type-based

detector is thus It is somewhat surprising that in many cases we can-

not oversmooth the types; that is, we found no perfor-
ON +2L+ ML) = O(N+ ML) mance degradation as the length of the smoothing filter in-
creases without bound. This indicates that the performance
compared wittO(N + L) for the simple type-based detec- of the system will be relatively insensitive to the amount

tor. Note that typically/ < L < N. of smoothing applied to the types once a sufficient amount
has been reached. This result differs from results in kernel-
5 Results based density estimation, in which a particular binwidth

minimizes mean-squared error. This behavior further em-
To illustrate the performance enhancement attainable byphasizes that improved pdf estimation does not necessarily

our proposed type post-processing, we consider the classilead to improved detector performance (in terms of proba-
cal detection problem of distinguishing between two pdfs bility of error) andvice versa
identical save for a shiftin the mean. From Figure 3, we see
that smoothing can improve the probability of error perfor-
mance of a type-based detector by approximately a factor
of 3.
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Figure 4. Performance of a smoothed type-based detector versus
the length of the smoothing filter for different pdfs. The detection
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Figure 5. Smoothed type-based detector performance for the
same scenario as in Figure 4(a). Here we use a method of Kelly
[7] for setting the bin widths of the histograms. This example
demonstrates that the Scott rule (4) for setting the histogram bin
widths is suboptimal with respect to the proBigpof error.
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in the mean. (a) Gaussian pdf, (b) Laplacian pdf, (c) mixture pdf

composed of 99% Gaussian + 1% Cauchy. The different curves

correspond to different numbets= 2#* of quantization levels.

Each pdf had unit variance; the mean shift was 0.2 in each case.

We usedVx = Ngr = 256 samples of training and test data for

each experiment.



