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Abstract

When applied to continuous-time observations, type-
based detection strategies are limited by the necessity to
crudely quantize each sample. To alleviate this problem, we
smooth the types for both the training and observation data
with a linear filter. This post-processing improves detector
performance significantly (error probabilities decrease by
over a factor of three) without incurring a significant com-
putational penalty. However, this improvement depends on
the amplitude distribution and on the quantizer’s character-
istics.

1 Introduction

Type-based detectors provide totally adaptive detection
by obtaining training data, then exploiting those data opti-
mally to determine bit streams. A preliminary application to
spread-spectrum communication [1] demonstrated the tech-
nique’s effectiveness and adaptability. In both training and
reception modes, the type-based detector requires received
values to be members of a finite set. When continuous-
valued signals occur, they must be quantized, and our pre-
liminary results have demonstrated effective, but not opti-
mal (i.e., that provided by likelihood ratio receivers), de-
tection with 3-bit quantization. We describe here a post-
quantization technique that allows type-based detectors to
achieve performance levels closer to optimal.

2 Type-Based Detection

We consider the classicalM -ary detection problem of
deciding betweenM different hypotheses. We assume that
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for eachhypothesis, we have available a training sequencen
X

(m)
n

oNX�1
n=0

that was measured when themth model was

true. Given an observation sequencefRng
NR�1
n=0 of un-

knowna priori origin, our task is to assign it to one of the
M classes with a minimum probability of error.

“Type” is a word used in information theory for the his-
togram estimate of a discrete probability distribution [2,
Chap. 12]. Given a stochastic sequencefYng

N�1
n=0 , each

element of which is drawn from a finite alphabetY =

fy1; : : : ; yLg, thetype bPY (y) of our sequence equals
X
n

I(Yn = y)=N; y = y1; : : : ; yL: (1)

HereI(�) is the indicator function, equaling one when its
argument is true and zero otherwise.

A type-based detector has an extremely simple structure.
Given the training dataX(m) and the observation vectorR,
we form types of theX(m), of R, and of theconcatenated
sequencesZ(m) = fX

(m)
1 ; : : : ; X

(m)
NX

; R1; : : : ; RNRg.
The types of the concatenated sequences can be expressed
in terms of the component sequences’ types and need not be
calculated independently:

bPZ(m) =

�
NX bPX(m) + NR bPR

�
=(NX +NR): (2)

The decision rule calculates the test statistic [3]

Sm =
NX

NR
D( bPX(m)k bPZ(m) ) +D( bPRk bPZ(m)) (3)

for each modelm, whereD(P1kP2) denotes the Kullback-
Leibler distance [4]. Qualitatively, the Kullback-Leibler
distances will be small if the observations do coincide with
the model, and large otherwise. Without going into details,
the smaller of the test statistics indicates the decision [1].

This strikingly simple form of hypothesis test leads to an
exponential error rate, defined to belimN!1� logPe=N ,



equal to that of the optimal clairvoyant detector.1 In this
sense, the type-based detector has performance characteris-
tics guaranteed to mimic those of the optimal. Our simula-
tions indicate that many cases exist where the performance
characteristics are virtually identical [1].

3 Type-Based Detection for Analog Signals

One important proviso in using type-based detectors is
thefinite-alphabet requirement.In many applications, the
training data and observations are analog, with continuous-
valued probability density functions (pdfs). Digital pro-
cessing systems employ finite precision A/D converters,
which do produce values drawn from a finite alphabet; how-
ever, as the alphabet size grows (more bits in the A/D con-
verter), more training data is needed to provide optimal er-
ror rates [3]. Thus, type-based detectors usually employ
relatively few quantization levels: about 8–16 in most ap-
plications. Such crude quantization, necessitated by train-
ing requirements, implies that type-based detector perfor-
mance cannot equal that of an optimal detector that uses
analog or full A/D converter values. At best, the ratio of er-
ror probabilities for the type-based detector and the optimal
one based on full-precision observations equals a constant;
at worst, the error rates do not agree.

When analog observations are quantized with an A/D
converter, the type computed from them is really ahis-
togram estimateof the pdf of the underlying analog ran-
dom process. Histogram estimates are very simple, but pro-
vide only crude approximations of the true underlying pdfs.
Histogram estimates are a special case ofkernel density es-
timates. Kernel estimates typically outperform histogram
estimates in the sense of integrated-mean-square error [5].
This realization might suggest a pre-processing approach
to improved type-based detection of analog data: construct
more accurate density estimates of theunderlying pdfs —
with a kernel smoother, for example — then sample the es-
timates to yield the types. A related approach would employ
wavelet smoothing methods [6] for the density estimate. In
either case, obtaining the pdf estimates is computationally
expensive and can only be justified if the sampled estimates
yield dramatic detector performance improvements.

A simpler option is post-processing. Can we perform
processing on the quantized observations to improve per-
formance? Our approach here is tosmooth the type with a
digital lowpass filter,essentially allowing data of surround-
ing quantization bins to influence the probability estimate in
each bin. (See Figures 1 and 2.) While in the same spirit as
a kernel density estimate, this approach is not in that class.
Our approach quantizes then smoothes, whereas sampling a

1A clairvoyant detector somehow knows the exact probabilistic model
and uses it to implement the optimal likelihood ratio detector.
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Figure 1. Computation of a typebPY for the analog signalW (t)
involves conversion to discrete-time, quantization toL levels, and
then computation of a histogram overN samples. In a smoothed
type, we post-processbPY with a linear filterg.
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Figure 2. Types and smoothed types. (a) An IID random se-
quenceY with Gaussian pdf. (b) TypebP (Y ) (bars) and smoothed
type bP (Y ) � g (stems) ofY . The smoothed type was obtained by
convolving the type with a 3-point boxcar lowpass filterg. Detec-
tion performance with the smoothed type is superior to that with
the original type.

kernel estimate amounts to smoothing, then quantizing.

In our approach, we automatically set the size of the
quantization bins (an automatic gain control) using the
“normal reference rule” of Scott [5] for optimal histogram
density estimation

h� = 3:5 b�N�1=3: (4)

Here,b� is the sample variance of theN observations. Af-
ter constructing a type of the data, we regard the type as a
discrete-time signal and smooth it through convolution. We
have retained A/D converter quantization of only 2 to 6 bits
(4–64 equally-spaced levels) and employed sampled Gaus-
sian smoothing functions.

4 Computational Complexity

It is important to note that the smoothed type-based de-
tector is only slightly more expensive (one small convolu-
tion) than a simple type-based detector, and therefore it is
suited to real-time application at high data rates.
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Figure 3. Performance of a smoothed type-based detector versus
the amount of training data. The detection task was to distinguish
between two unit-variance Gaussian pdfs shifted in mean by 0.2.

Vertical axis gives the probability of errorPe based on 1000 in-
dependent trials; horizontal axis gives the length of the smoothing
window. In each experiment, we choseNX = NR = #samples,
which corresponds to the case of minimal training data. The types
were smoothed with a sampled Gaussian window. The result for
the zero-length window corresponds to that produced by the stan-
dard type with no smoothing. The performance of the optimal
(matched filter) detector is indicated on the right for each case.

Assuming equal amounts of test and training dataNX =

NR � N and an alphabet of sizeL, the computational cost
(in multiplies and additions) of buildingeach type as in (1)
isO(N ). The costs of concatenating the types as in (2) and
computing the test statistic (3) are bothO(L). The cost of
smoothing the types isO(ML), with M the length of the
smoothing filter. The total cost of the smoothed type-based
detector is thus

O(N + 2L+ML) = O(N +ML)

compared withO(N + L) for the simple type-based detec-
tor. Note that typicallyM < L� N .

5 Results

To illustrate the performance enhancement attainable by
our proposed type post-processing, we consider the classi-
cal detection problem of distinguishing between two pdfs
identical save for a shift in the mean. From Figure 3, we see
that smoothing can improve the probability of error perfor-
mance of a type-based detector by approximately a factor
of 3.

In Figure 4, we demonstrate the effectiveness of smooth-
ing with three different noise distributions: Gaussian,
Laplacian, and a mixture composed of 99% Gaussian + 1%
Cauchy. In each case, the probabilityof error decreases with
smoothing, up to a maximum of about 3.5 times.

While simple and data-adaptive, the Scott rule (4) for
setting the histogram bin widths is suboptimal with respect
to the probability of error. In Figure 5, we show the per-
formance of a smoothed type-based detector where the bin
widths were chosen using a rule of Kelly [7] that requiresa
priori knowledge of the underlying pdfs. It is interesting to
note that even in this case, we can improve the performance
of this type-based detector by smoothing.

Caveat: We have found that smoothing does not im-
prove performance in all detection scenarios. For example,
smoothing seems to provide no performance gain in the case
of two different amplitude distributions having equal means
and variances. Fortunately, in communication problems we
typically observe smooth pdfs of the same form but with
differing means and/or variances. In our experience, some
amount of smoothing has always provided a degree of per-
formance gain in such scenarios.

6 Conclusions

We have proposed a type-based adaptive detection algo-
rithm tailored to analog data. The simplicity and robust-
ness of the algorithmmakes it suitable for real-time process-
ing in applications. Its key ingredient is a post-processing
smoothing filter that is applied to each type. Smoothing im-
proves the performance of the detector in terms of probabil-
ity of error. Equivalently, for the same error performance,
smoothing allows us to reduce the amount of training data
significantly. In a communications scenario, as in [1], this
approach would allow for shorter preamble sequences.

It is somewhat surprising that in many cases we can-
not oversmooth the types; that is, we found no perfor-
mance degradation as the length of the smoothing filter in-
creases without bound. This indicates that the performance
of the system will be relatively insensitive to the amount
of smoothing applied to the types once a sufficient amount
has been reached. This result differs from results in kernel-
based density estimation, in which a particular binwidth
minimizes mean-squared error. This behavior further em-
phasizes that improved pdf estimation does not necessarily
lead to improved detector performance (in terms of proba-
bility of error) andvice versa.
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Figure 4. Performance of a smoothed type-based detector versus
the length of the smoothing filter for different pdfs. The detection
task was to distinguish between two pdfs identical save for a shift
in the mean. (a) Gaussian pdf, (b) Laplacian pdf, (c) mixture pdf
composed of 99% Gaussian + 1% Cauchy. The different curves
correspond to different numbersL = 2#bits of quantization levels.
Each pdf had unit variance; the mean shift was 0.2 in each case.
We usedNX = NR = 256 samples of training and test data for
each experiment.
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Figure 5. Smoothed type-based detector performance for the
same scenario as in Figure 4(a). Here we use a method of Kelly
[7] for setting the bin widths of the histograms. This example
demonstrates that the Scott rule (4) for setting the histogram bin
widths is suboptimal with respect to the probability of error.
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