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ABSTRACT

A new method for assessing the stationarity of a signal
is addressed. The proposed technique is based on the ap-
plication of time-varying autoregressive models, in which
coe�cient variations are decomposed upon a set of deter-
ministic basis functions. Stationarity is evaluated by se-
lecting the optimal number of basis functions with a gene-
ralized version of Minimum Description Length criterion.
Results are then validated with hypothesis testing on the
model coe�cients. Several simulation results are presented.
First, application to synthetic signals con�rms the basic as-
sumptions and highlights the main features of the method.
Second, relevant conclusions are derived for the study of
the stationarity of heart rate time series before the onset of
ventricular tachyarrhythmias.

1. INTRODUCTION

Numerous signals such as speech or biomedical ones have
their statistical and spectral properties changing with time.
Generally, these characteristics are referred to as a nonsta-

tionary behaviour. Since many signal processing analy-
sis techniques (parametric and nonparametric methods,
such as autoregressive (AR) modeling or discrete Fourier
transform (DFT)) rely on an assumption of stationarity,
assessment of this feature is of great importance.

Di�erent approaches have been described in the literature
[1, 2] but their implementation is not always straightforward
and the results are sometimes hard to interpret. Moreover,
tests based on the computation of statistical parameters
(such as in [2]) often require strict conditions (number of
samples, number of division intervals). The main goal of
this paper is to consider the problem of stationarity asses-
sment with a new objective criterion.

The method introduced here is directly derived from a
parametric approach. The classical AR modeling scheme
is transformed into a time-varying autoregressive (TVAR)
model by decomposing the time evolution of the coe�cients
as a linear combination of basis functions. Then, the well
known Minimum Description Length (MDL) criterion for
AR order selection is generalized in order to determine the
optimal number of these basis functions. Stationarity is
�nally assessed by considering the optimal basis order and
by performing a hypothesis test on the TVAR coe�cients.

2. TIME-VARYING AUTOREGRESSIVE

MODEL

This way of expressing time dependence in the AR coe�-
cients seems to have been �rst introduced by Rao in [3].
Further studies have been reported by Liporace [4], Grenier
[5], and Hall et al. [6].
A scalar discrete-time stochastic process can be expressed

with the following classical AR model:

x(n) =

pX
i=1

aix(n� i) + e(n) (1)

where e(n) is the driving white noise, and ai are the p-order
model coe�cients. However, when x(n) cannot be conside-
red as a stationary process, this approach is no longer valid
since there is no time dependence in the AR coe�cients. A
solution is then to make the assumption that the coe�cient
variations can be approximated by a linear combination of a
�nite number of known deterministic functions uk(n) (cal-
led a basis):

ai(n) =

qX
k=0

aikuk(n) (2)

Therefore, the general TVAR model can be formulated as:

x(n) =

pX
i=1

ai(n)x(n� i) + e(n)

=

pX
i=1

(

qX
k=0

aikuk(n))x(n� i) + e(n) (3)

Estimation of the coe�cients aik is achieved by minimizing
the total mean square error. This leads to the computation
of a generalized correlation function given by:

ckl(i; j) =
X
n

uk(n)ul(n)x(n� i)x(n� j) (4)

Determination of the coe�cients aik themselves is then per-
formed by solving the following set of normal equations:

pX
i=1

qX
k=0

aikckl(i; j) = c0l(0; j) (5)

1 � j � p and 0 � l � q

Hall et al. [6] have discussed in more detail the computa-
tional aspects of this model.



3. PARAMETER SELECTION

Unlike the classical AR modeling scheme, the parameter
choice depends on three degrees of freedom, namely the
AR order p, the basis order q, and the set of basis functions
uk(n).

3.1. Choice of the Basis Functions

According to Equation 2, no particular constraint is im-
posed on the basis uk(n). Therefore, one will be able to
track only variations which are approximable by this set
of functions. Many di�erent solutions have been proposed,
among which a Fourier basis [6], a wavelet basis [7], or a set
of prolate spheroidal functions [8]. None of these solutions
seems to be de�nitive, partly because the choice of uk(n)
needs some a priori knowledge upon the time variations
present in x(n). On the other hand, bases such as prolate
spheroidal functions are very complex and hard to gene-
rate. We suggest here to use classical polynomial functions
(namely Chebychev, Hermite and Legendre polynomials)
because they can approximate a wide range of variations
and their implementation is straightforward.

3.2. Order Selection

The usual way of choosing the order of a model is to make
use of a selection criterion. In this work, Rissanen's Mini-
mum Description Length (MDL) criterion [9] is generalized
to the TVAR model. The main idea, based on information
theory, starts with the notion that the length required to
encode a set of observations depends on the model that is
assumed to have generated these data. Accordingly, Rissa-
nen selects the model that minimizes the code length of the
observed data. In order to take into account the modi�ca-
tions introduced by the TVAR scheme, the MDL criterion
can be adapted according to the following equation:

MDL(p; q) = N ln(�2p;q) + p(q + 1) ln(N) (6)

where N is the signal length, and �2p;q is the residual error
variance. Minimization of (6) by an exhaustive search on a
set of (p;q) values gives the optimal orders (popt;qopt).

4. MODEL VALIDATION

We also propose to compute the statistical signi�cance of
the TVAR coe�cients in order to validate the optimal
model. For this, we �rst make some assumptions about
the distribution of the estimated coe�cients. This can be
achieved by deriving the expression of the maximum like-
lihood estimator L(a), where a is the vector of estimated
coe�cients:

ln L(a) = �

h
N� p+ 1

2
ln(2��2)
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(7)

As is well known, under certain regularity conditions, these
estimators are asymptotically multivariate normally distri-
buted with covariance matrix equal to the inverse of the
Hessian or information matrix :

F =
@2 logL(a)

@a@aT
(8)

The diagonal elements of the inverse Hessian give thus ap-
proximations of the variances �2aik of the model coe�cients
[10].

Therefore, under the null hypothesis that a coe�cient
is zero, the ratio of the coe�cient divided by its standard
deviation is approximately distributed as a standard normal
variable. We can thus compute the probability:

prob(jaik j � d�aik) = prob(jaik=�aik j � d)

According to the value of d, the hypothesis is accepted
with a signi�cance level � given by the normal distribution
N(� = 0; � = 1). If one takes � = 0:95, a coe�cient will be
considered statistically signi�cant if the ratio jaik=�aik j is
greater than 1:96. This can be repeated for each coe�cient
so as to obtain a global signi�cance rate for the model.

5. STATIONARITY ASSESSMENT

Finally, the following algorithm is presented to evaluate the
stationarity of a signal.

1. TVAR models are applied for the range p =
pmin:::pmax and q = 0:::qmax.

2. Generalized MDL criterion is computed for each couple
(p;q).

3. Optimal orders (popt;qopt) are those for which the MDL
value is the lowest.

4. The number of statistically signi�cant coe�cients is
derived by performing the above described hypothesis
test. The global signi�cance rate is derived.

To assess stationarity, we look at the basis order qopt
given by the generalized MDL criterion. If this value is high,
it means that a large number of basis functions is required to
accurately model the signal. In other words, the statistical
properties of the signal are strongly changing with time,
suggesting in this way a nonstationary behaviour. On the
other hand, if qopt = 0, the optimal basis contains only
a constant function. Since in this case a TVAR model is
equivalent to a standard AR model, we can expect that
the signal structure is very close to stationarity. It is also
possible that the TVAR model cannot �t the signal under
study, for instance with a highly nonlinear signal. So, the
low signi�cance level of the TVAR coe�cients will indicate
that the model is not able to track the signal variations.
Hypothesis testing is thus a way of assessing the con�dence
we can have in the results.

Moreover, it is sometimes useful to determine if a smaller
part of a signal is stationary. For this purpose, we suggest to
apply the algorithm to subsections of the signal in order to
evaluate a possible horizon of stationarity, i.e. the length
of the greatest signal section which can be considered as
stationary.

6. SIMULATION RESULTS

This part of the paper addresses three simulation results
in order to validate the main assumptions of the proposed
algorithm.



a10 = �1 a11 = 0:9 a12 = �0:9

a20 = �1 a21 = �0:8 a22 = �0:8

Table 1. TVAR coe�cients for the �rst simulation.

a10 a11 a12 a20 a21 a22

aik -1 0.9 -0.9 -1 -0.8 -0.8

�aik -0.93 0.84 -0.85 -1.00 -0.78 -0.81

�aik
2 0.27 0.09 0.37 0.28 0.10 0.39

��aik
2 0.26 0.11 0.37 0.29 0.12 0.41

Table 2. First row: actual coe�cient values. Se-

cond row: means of the estimated coe�cients for

100 realizations. Third row: means of the estima-

ted variances for each coe�cient (computed accor-

ding to Equation 8). Fourth row: variances of the

estimated coe�cients for 100 realizations.

6.1. Computation of Coe�cient Variances

The �rst example is a signal of length N = 500 built with
a TVAR model (p = 2; q = 2) and a Chebychev basis. The
TVAR coe�cients are given in Table 1.

100 realizations of the process were synthetized with unit
variance white noise excitation. Simulation results are pre-
sented in Table 2. It clearly appears that the variances
computed with the inverse Hessian are reliable estimators
of the actual coe�cient variances.

The algorithm was then applied for p and q ranging from
1 to 5 and with a Chebychev basis in order to retrieve the
original values popt = 2 and qopt = 2. As expected, all
coe�cients were found signi�cant.

6.2. Determination of a Stationarity Horizon

The second example is an AR process (p = 2;q = 0) of
length 500 whose coe�cients are changing at the middle of
the signal according to the values given in Table 3.

The stationarity test was applied for p ranging from 1 to
5 and q ranging from 0 to 10, with a Legendre basis. The
�rst experiment was carried out on the �rst 250 samples of
the signal, corresponding to a classical AR model. For this
part, results were: popt = 2, qopt = 0 and a signi�cation rate
of 1, con�rming the actual values. The second one was on
the whole signal and gave the following results: popt = 2,
qopt = 5 and a signi�cance rate of 0.75. The large value
qopt is due to the abrupt change at the middle of the signal.
Accordingly, a 250-sample stationarity horizon can be asso-
ciated with this signal. However, it is clear that in this case,
a basis built with discontinuous functions (for instance with
Walsh functions) would yield a better modeling.

1 � n � 250 251 � n � 500
a10 = �1 a10 = 1

a20 = �0:2 a20 = �0:4

Table 3. TVAR coe�cients for the second simula-

tion.

6.3. Simulation with a Nonstationary Signal

Finally, we consider the following heteroscedastic process
[11] generated with a signal-dependent gain and represented
in Figure 1:

x(n) = 0:5x(n� 1) + jx(n� 1)j0:2e(n) (9)

This kind of signal displays stationary sections alternating
with burst-like nonstationary ones. The number of bursts is
conditioned upon the gain multiplying the excitation e(n).
Iterations were carried out for p covering the range [5,20]
and q covering the range [0,10]. We got maximum values
for the orders: popt = 20, qopt = 10 and a signi�cation rate
of 0.98. The strong nonstationarities present in the signal
are related to the high order values.

7. APPLICATION TO BIOMEDICAL DATA

The method described here was initially developed as part
of a study dealing with heart rate (HR) signals retrieved
from electrocardiogram (ECG) recordings. An example
of such a signal for a healthy person is presented in Fi-
gure 2. HR variability analysis is a well known technique
to investigate interactions between the autonomic nervous
system and the cardiovascular system. Classical methods
used up to now (parametric and nonparametric power spec-
trum estimation) rely on an assumption of stationarity.
This hypothesis is not obvious since long-term HR recor-
dings have shown strong circadian variations suggesting a
nonstationary behaviour. However, current results are still
contradictory and there is a need for a better estimation of
changes occuring in the HR dynamics.
The goal of this study was to assess the stationarity of

HR signals coming from two populations. The �rst one
was a control group of healthy subjects, whereas the second
one consisted of patients su�ering from ventricular tachy-
arrhythmias (VTA, tachycardias and �brillations). In this
case, data were retrieved from de�brillators and contained
the last 1024 beats before the onset of the VTA.
The following parameters were used for experiments: Le-

gendre basis, TVAR order p ranging from 5 to 30 and basis
order q covering the range 0 to 10. Each signal was divi-
ded into 6 sections of increasing duration (with a step size of
100 s), in order to determine a possible stationarity horizon.
The test was applied successively on each section. It was
noted that the optimal basis order qopt was nearly always
equal to zero for the two groups and for all sections. The
strong time consistency of the orders suggested that up to
a 10-minute duration, the HR signal structure is stable and
accordingly very close to stationarity. Moreover, no signi-
�cant di�erence was observed between the control group
and the patients su�ering from VTA, invalidating the as-
sumption of a modi�cation of the HR dynamics within 10
minutes preceding a VTA. This result is important because
it suggests to consider a wider range of time before the on-
set of an arrhythmic event to track possible changes in the
signal behaviour. Concerning the TVAR signi�cation rates,
a lower level was observed for healthy subjects, suggesting
an increasing trend in the linearity of the signals, from nor-
mal persons to patients su�ering from VTA. This observa-
tion should motivate further investigations with nonlinear
tools.



8. CONCLUSION

A new method for assessing the stationarity of time series
was presented in this paper. Simulations showed that the
combination of a time-varying autoregressive model and a
generalized version of MDL criterion was able to evaluate
the stationarity of the signal under investigation. The �t-
ting of the TVAR model to the signal was taken into acco-
unt by hypothesis testing. Several examples were presented
in the paper to highlight the main features of the method.
Application to biomedical data was also considered and im-
portant conclusions concerning heart rate dynamics were
established with this new test.
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Figure 1. Heteroscedastic signal
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Figure 2. Example of heart rate signal
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