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ABSTRACT

In this paper we present a stochastic framework for the
recognition of binary random patterns which advantageously
combine hmms and Markov random �elds (mrfs). The hmm
component of the model analyzes the image along one di-
rection, in a speci�c state observation probability given by
the product of causal mrf-like pixel conditional probabil-
ities. Aspects concerning de�nition, training and recogni-
tion via this type of model are developed throughout the
paper. Experiments were performed on handwritten digits
and words in a small lexicon. For the latter, we report a
89.68% average word recognition rate on the srtp1 French
postal cheque database (7057 words, 1779 scriptors).

1. INTRODUCTION

Hidden Markov model (hmm) techniques imply sequential
pattern processing prior to recognition by performing lo-
cal observations along a given axis. This step generally
contrasts with the 2D nature of the modeled data forcing
researchers to enlarge hmm formalism. However, it was
proved by Levin in [8] that a direct extension of the dy-
namic time warping algorithm (dtw), which is the basic
mechanism of these models, to the plane, results in an np-
complete problem. By applying a class of constraints to
the matching, the complexity can be pulled down to poly-
nomial. A type of models issued from such a simpli�cation
are the phmms (planar- or pseudo hmms) [2]. Although
these models are easy to implement, the underlying sta-
tistical line-independency hypothesis does not always hold
true in practice.

We think that a two-dimensional model akin to an im-
age recognition task would be more pro�table. Therefore,
we have studied the applicability of Markov random �elds
to binary pattern recognition (bpr). These models natu-
rally overcome the phmm limitation given that the proba-
bilities of pixels are conditioned by their direct 2-D neigh-
bors. Markov �elds have been employed for a long time
in statistical mechanics, the application of these models to
images being more recent. They are used in image process-
ing and arti�cial vision in tasks such as segmentation and
restoration [6]. We restricted our attention to the study of
causal mrfs for two major reasons. First, as stated in [3],
one cannot specify arbitrary conditioning neighborhoods for

1Service de Recherche Technique de la Poste

consistency reasons (existence of the joint �eld probabil-
ity), whereas there are several theoretical achievements on
causal mrfs. On the other hand, recursive training and
recognition procedures are more easily applicable on causal
�elds allowing a natural progression of the joint �eld mass
probability calculus. The concept of causality may have dif-
ferent interpretations since the plane is not provided with
a natural order. Two types of causal mrfs are widely used
in image processing: the Markov random mesh (mrm) [1]
and the unilateral Markov random �eld also called non-
symmetric half-plane Markov chain (nshp) [10]. Jeng in [7]
noted that nshps are more appropriate than mrms when
an accurate model for representing two dimensional data is
required (mrms are conditionally independent on 45o diag-
onals which diminishes their capability to detect segments
having these orientations).

Park and Lee introduced a third-order hidden Markov
mesh random �eld model (hmmrf) and applied it to bpr

(handwritten Hangul characters) [9]. By using a vector
quantization technique, the cells resulting from a regular
decomposition of the input image are encoded into a 2-D
sequence of symbols from a �nite alphabet. During the de-
coding phase, a fast look-ahead scheme [4] based on marginal
map is used to �nd an e�cient estimation of the hidden
states. The state sequence found is a realization of an un-
derlying stationary Markov random mesh process. In or-
der to avoid the exponential complexity inherent to a com-
plete state decoding, the authors use a simpli�ed version of
the 2D em algorithm (well explained in [5]) called decision-
directedwhich was �rst proposed by Devijver [4]. This algo-
rithm assumes that the lines and the columns are mutually
independent which may decrease the modeling accuracy for
speci�c applications as was noticed by the author.

Our approach [11, 12] consists of using nshp Markov
random �elds at a pixel observation level without making
any hypothesis on the dependency between lines and/or
columns. In each state of the hmm, we observe the image
columns in a left-to-right fashion. For the current column,
the emission probability is computed using state-related
nshp-like conditional pixel distributions. A transition from
a state to another implies an optimal change of these dis-
tributions in order to maximize the likelihood of the image.
Training is based on mle optimization and mainly consists
in estimating the pixel distributions. The estimation is done
by performing a maximum likelihood count of pixel con�gu-
rations (value of the current pixel and of its neighbors) mod-



ulated by the probability of being in a given state which,
at its turn, is expressed using modi�ed Forward-Backward
functions. The former functions serve also for computing
the emission probability during recognition.

2. NON-SYMMETRIC HALF-PLANE HIDDEN

MARKOV MODELS

For the following de�nitions and properties related to mrfs,
the reader may refer to [3]. Let X = fXijg(i;j)2L be a ran-

dom �eld de�ned over a m�n integer lattice L. Xj stands
for the column j of X. Moreover, P (XijjXkl) means the
probability of realization xij of Xij knowing realization xkl
of Xkl, that is P (Xij = xijjXkl = xkl). Finally, the nota-
tion P (XijjXA), A � L, stands for P (XijjXkl; (k; l) 2 A).
Since we deal with binarized images, we only consider bi-
nary random �elds, meaning that random variables take
values of f0; 1g (0-white pixel, 1-black pixel). According to
the previous assumptions, a sample pattern image is natu-
rally one possible realization of a random �eld. Let us next
de�ne the nshp Markov chain. Consider the following sets:

�ij = f(k; l) 2 L j l < j or (l = j; k < i)g; �ij � �ij

�ij is called the non-symmetric half-plane and �ij the
support of pixel (i; j) 2 L. Both types of sets are illustrated
in Figure 1.
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Figure 1: Sets of pixels related to site (i; j).

X is a non-symmetric half-plane Markov chain if and
only if:

P (XijjX�ij) = P (XijjX�ij ); 8 (i; j) 2 L (1)

The joint �eld mass probability P (X)may be computed
following the chain decomposition rule of conditional prob-
abilities:

P (X) =

nY
j=1

mY
i=1

P (XijjX�ij ) =

nY
j=1

mY
i=1

P (XijjX�ij ) (2)

Commonly, authors using nshp Markov chains, choose
for all �ij's the same form.

nshp Markov chains can be implemented by hmms if
we consider the random �eld realization (pattern image) as
an observation sequence of columns. In a speci�c state of
the hmm, observation probability would be given by the col-
umn product of pixel conditional probabilities. A transition

from one state of the model to another will result in chang-
ing the set of probability distributions, and in dynamically
modifying feature sensitivity. After the training phase, the
model will associate states to particular features within the
image areas. The previously mentioned reasons, plus the
fact that there are optimal training and recognition proce-
dures, lead us to use hmms to e�ciently implement nshps.
Figure 2 illustrates the implementation scheme of an nshp-

hmm model.
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Figure 2: Architecture of an nshp-hmm model.

LetQ = q1 : : : qn be a stochastic state process associated
to the columns of X. The random variables qj take values in
a �nite set of states S = fs1; : : : ; sNg. Using equation (2),
let us write the pattern likelihood with respect to a model
� (P (q1jq0) stands for P (q1)):

P (Xj�) =
X
Q

P (X;Qj�) =
X
Q

P (XjQ;�)P (Qj�)

=
X
Q

nY
j=1

P (qjjqj�1)P (X
jjXj�1

: : :X
1
; qj; �)

=
X
Q

nY
j=1

P (qjjqj�1)

mY
i=1

P (XijjX�ij ; qj ; �)

=
X
Q

nY
j=1

P (qjjqj�1)

mY
i=1

P (XijjX�ij ; qj ; �)

(3)
under the assumption that Q is a �rst order Markov pro-
cess and that pixel distributions for column j depend only
on state qj. Obviously, (3) bears a strong resemblance to
the classical 1D hmm deduction with the di�erence that we
maintain 2D distributions, which we tie to speci�c states of
our hmm. Thus, the di�erence with an ordinary (discrete)
hmm is the giving of the following two elements:

� � = f�ijg(i;j)2L, �ij = f(i � ik; j � jk)j1 � k �
P; jk > 0 or (jk = 0; ik > 0)g\L, where P represents
the number of neighboring pixels per site. � is called
the neighborhood set and P the order of the model.

� B = fbik(x;x)g1�i�m;1�k�N , x 2 f0; 1g; x 2 f0; 1gP ,
bik(x;x) = P (Xij = xjX�ij = x; qj = sk), the condi-
tional pixel observation probabilities.

For simplicity, we will denote henceforth an nshp-hmm

by � = (�;A;B; �) where A represents the state transition
matrix and � the set of initial probabilities. In the follow-
ing, we show how to estimate the emission probability of a



pattern (the image likelihood) and we give some elements
concerning training and recognition.

An optimal evaluation of the likelihood P (Xj�) is ob-
tained using modi�ed forward-backward functions. We will
de�ne the forward function � (backward function � fol-
lowing a dual de�nition) as being the accumulated �eld
probability until column Xj of X when ending in state si,
�j(i) = P (X1X2 : : :Xj; qj = sij�):

�1(i) = �i

mY
k=1

bki(Xk1;X�k1
); 1 � i � N

�j(i) =

"
NX
l=1

�j�1(l)ali

#
mY
k=1

bki(Xkj; X�kj
); j = 2 : : : n

P (Xj�) =

NX
i=1

�n(i)

(4)

During training, the goal is to determine the param-
eters (A;B; �) of the model which maximize the product
RY
r=1

P (X(r)j�), where X(r) are sample images used to train

the model �. Note that, as in the 1D case, there is no
global optimization criterion and direct method. We use the
maximum likelihood criterion (mle) by performing Baum-
Welch re-estimation. We will only detail the conditional
pixel probability re-estimation:

bil(x;x) =

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

RX
r=1

1

Pr

nrX
j = 1 s:t:

X
(r)

ij = x and

X
(r)

�ij
= x

�
r
j(l)�

r
j (l)

RX
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= x
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j (l)

; den 6= 0

bil(x;x); otherwise

x 2 f0; 1g; x 2 f0; 1gP ; 1 � i �m; 1 � l � N

(5)

where by Pr = P (X(r)j�), we understand the emission

probability of sample X(r) and by nr its length. Let us
take a closer look to equation (5). In fact, pixel probabil-
ity re-estimation is done by performing an ml count of the
number of times that a given pixel con�guration is encoun-
tered. Note that all samples are supposed to have the same
number of lines m which necessitates a height normalization
procedure prior to training or recognition.

We chose a model discriminant approach by construct-
ing an nshp-hmm model for each di�erent class. Recogni-
tion is performed simply by calculating the pattern likeli-
hood for all models and by labeling the image according to
the model which produces the maximum a posteriori prob-
ability via Bayes decision rule.

3. EXPERIMENTS AND RESULTS

The �rst set of experiments was conducted on a multi-
scriptor database of 562 digits. 337 randomly chosen digit
images (60%) served for model training and a distinct set
of 225 were used for testing. All images were scaled to
m = 16 lines and we opt for nshp-hmm models of order 2
with N = 10 states (see Figure 3). Finally, we obtained a
98.22% top 1 and a perfect top 3 digit recognition score.

By far the most relevant experiments were performed
on the srtp database (7057 images, lexicon of 27 words,
1779 scriptors). This bpr task is extremely di�cult be-
cause of the totally unconstrained writings involved [11].
Images were scanned at 300 dpi from real postal cheques
and horizontal and diagonal bars have been removed. The
only preprocessing we apply is word-image height normal-
ization.

We randomly chose 5284 images (approximatively 3/4
of the database) for performing word model training. Recog-
nition was done on 1773 distinct images and we report a
89.68% top 1 word recognition rate. Next, we show the
initial parameters for each model.

- State number: it is proportional to the average word
length in pixel columns, n, after height normaliza-
tion. In practice, a number of states equal to n=2
(varying from 11 to 35 for m = 20 lines) gave the
best recognition results.

- State transitions: we allow only transitions to the
current or to the next state (strict left-to-right archi-
tecture). Initially, transitions are equiprobable, that
is aii = aii+1 = 0:5; 1 � i � N � 1.

- Number of lines: for computational trainability rea-
sons, we limited this number tom = 20. Experiments
were carried out with m = 10, m = 15 and m = 20.

- Model order (number of neighborhood pixels): we ex-
perimented models of order P = 0 : : : 4 corresponding
to the neighborhoods depicted in Figure 3.

- Conditional pixel observation probabilities: all sam-
ples were divided in N vertical bands of equal width.
A normalized count of the number of pixel con�gu-

rations X
(r)

ij = x and X
(r)

�ij
= x, 8x 2 f0; 1g;x 2

f0; 1gP , within each band is performed over all sam-

ples X(r).
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Figure 3: Various neighborhoods considered during testing.

Figure 4 gives us visual feedback on the real learning
capabilities of the models. The grey levels code the prob-
ability of black pixels, and depend upon the state and the
line index of the nshp-hmm. The word prototypes were
obtained using models of order 3 trained with samples of
height m = 30 (20 iteration steps). One may observe that,
despite the huge variability of the patterns at pixel level,
the models are able to focus on pixel distributions charac-
terizing speci�c writing strokes.
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Figure 4: Digit and word prototype synthesis.

4. CONCLUSION

In this paper we have described a new approach to binary
pattern recognition which combines causal mrf-like two-
dimensional modeling and hmms. A sample image is viewed
as a random �eld realization which, at its turn, is considered
to be an observation sequence of pixel columns. The emis-
sion probability of this sequence is calculated using state
dependent conditional pixel probabilities. We have seen
throughout the article how the estimation of these nshp-
like probabilities is performed by keeping a close relation
with the major bene�ts of hmm formalism (dynamic warp-
ing, Baum-Welch re-estimation algorithm, mle optimiza-
tion criterion, etc.). The application of these models to
handwritten digit and word recognition shows encouraging
results and leaves our system open to further improvements.
Future development will concern the automatic inference of
neighborhoods using the Akaike or Rissanen information
criterion suited to two-dimensional data. Another problem
which also needs to be addressed is the e�ciency of our
parameter estimation method mle compared to methods
based, for example, on maximum mutual information.
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