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ABSTRACT

In this paper the problem of model selection is addressed

by the Bayesian methodology and the bootstrap tech-

nique. As a rule for choosing the best model from a set of

proposed models, the maximum a posteriori principle is

used. The evaluation of the maximuma posteriori prob-

ability (MAP) of each model amounts to computation

of integrals whose integrands may be very peaked func-

tions. We carry out the integration by importance sam-

pling, where the importance function is a multivariate

Gaussian whose samples are obtained by the bootstrap

technique. The performance of the MAP rule is ex-

amined by computer simulations, and comparisons with

the widely used AIC (Akaike information criterion) and

MDL (minimum description length) rules are made.

1. INTRODUCTION

Model selection is an important problem in signal pro-

cessing. Very often when we observe data whose gener-

ating mechanism is not completely known, we �rst pro-

pose a set of models for the generating mechanism and

then we try to choose the best of them using some prede-

�ned criterion. Such applications are common in sonar,

radar, image processing, communications, and biomed-

ical signal processing.

The problem of model selection is basically a mul-

tiple hypotheses testing problem. In many practical

situations a reasonable principle for choosing the best

model is the maximum a posteriori probability. To im-

plement this principle, a standard approach is to apply

the Bayesian methodology. The strict implementation

of the MAP principle requires evaluation of intractable

integrals. Their computation is a very di�cult task even

for low dimensional parameter spaces. To alleviate this

di�culty one can use Laplace's asymptotic approxima-

tion, which is based on the assumption that the likeli-
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hood function is highly peaked near the maximumlikeli-

hood parameter estimate. This approximation exploits

the Taylor expansion, which in the literature has been

used in several variations [1], [2], [7]. In this paper we

propose a di�erent approach based on Monte Carlo com-

putation of the required integrals. More speci�cally, we

carry out the integration by importance sampling, where

the importance function is the posterior density of the

model parameters. This probability density function is

assumed to be a multivariate Gaussian which in many

cases is a good approximation, even when the number of

available samples is relatively small. The sampling from

the posterior density is implemented by the bootstrap

method [4], [5]. The usage of the bootstrap method to

applications in model selection has already been pro-

posed [3], [8], [9], but there the overall selection proce-

dure is either based on a completely di�erent concept or

the simulation from the posterior is done in a dissimilar

way.

In the paper we �rst state the problem. Then we

derive the criterion and continue with the outline of its

implementation by the bootstrap method. The paper

ends with three experiments that show the performance

of the selection rule and compare it with the popular

AIC and MDL.

2. PROBLEM STATEMENT

We formulate the problem using standard assumptions.

A set of data x is observed and a family of parametric

models M1, M2, ...,Mq, which describe the data gen-

eration, is proposed. The models can be of any type,

nested or nonnested. The parameters associated with

the k-th model are denoted by �k, and they are assumed

unknown. Each modelMk is described by a parametric

probability distribution function whose form is known

and given by f(xj�k;Mk). In addition, the a priori

probability that the model Mk is the one that gener-

ated the data is given by p(Mk).



The objective is to choose the best model from the

candidates M1, M2, ...,Mq , using the MAP principle,

i.e., we want to select the model according to

Mk̂ = arg max
k=1;2;:::;q

p(Mkjx) (1)

where p(Mkjx) is the a posteriori probability that the

modelMk has generated the data x.

3. CRITERION FOR MODEL SELECTION

The quantity of interest is the a posteriori probability

p(Mkjx), which is obtained from Bayes' theorem

p(Mkjx) =
f(xjMk)p(Mk)

f(x)
(2)

where f(xjMk) is the marginal density of the data given

they are generated by Mk. The marginal density is

found from

f(xjMk) =

Z
�k

f(xj�k;Mk)f(�kjMk)d�k (3)

where f(�kjMk) is the prior density of the model pa-

rameters, and �k is the parameter space of Mk. If the

a priori probability p(Mk) is uniform, the selection rule

(1) simpli�es to

Mk̂ = arg max
k=1;2;:::;q

f(xjMk) (4)

because the marginal density of the data f(x) in (2)

does not depend on the model Mk. This rule can be

rewritten as

Mk̂ = arg max
k=1;2;:::;q

Z
�k

f(xj�k;Mk)f(�kjMk)d�k:

(5)

In many practical problems, the main di�culty in using

(5) is the evaluation of the integrals, since almost always

they are quite intractable. Their numerical computation

is usually so ine�cient that in general (5) is of very little

use [7]. An approximation of (5) can be obtained by

Taylor expanding ln f(xj�k;Mk)f(�kjMk) around the

maximum likelihood estimates of the model parameters

�̂k, exponentiating the approximation, and carrying out

the integration analytically. Here, we propose a di�erent

approach.

The evaluation of the integral

Ik =

Z
�k

f(xj�k;Mk)f(�kjMk)d�k (6)

can be carried out by the Monte Carlo method, which

approximates it by

~Ik =
1

B

BX
b=1

f(xj�bk;Mk)f(�
b
kjMk) (7)

where the �bk's are samples from the density f(�kjMk).

The estimate in (7) may converge very slowly to the true

value of Ik, especially if f(�kjMk) is a function that

quanti�es vague prior knowledge about �k. A better

approach is to rewrite (6) as

Ik =

Z
�k

f(xj�k;Mk)f(�kjMk)

h(�k)
h(�k)d�k: (8)

where h(�k) is a probability density function whose val-

ues are much larger in the region where the magnitude

of f(xj�k;Mk)f(�kjMk) is big than in any other part

of the parameter space �k. Then, analogously to the

estimate ~Ik in (7), we can write

Îk =
1

B

BX
b=1

f(xj�bk;Mk)f(�
b
kjMk)

h(�bk)
(9)

where the samples �bk are generated from h(�k). The

estimate (9) is known as the importance sampling esti-

mate of (6) because in evaluating the integral the sam-

ples �bk come most often from the regions where the inte-

grand f(xj�bk;Mk)f(�
b
kjMk) is large. It can be shown

that this estimate is unbiased and, provided the impor-

tance function is properly chosen, Îk has a smaller vari-

ance than ~Ik.

Theoretically, if for any �bk, f(xj�
b
k;Mk)f(�

b
kjMk) >

0 and h(�bk) > 0, then any function h(�k) can be used

in (9). However, the art of the importance sampling

technique is to choose a function which, (a) is easy to

sample from, and (b) resembles the integrand as closely

as possible. It should be noted that the e�ectiveness of

the importance sampling is mainly determined by how

closely h(�k) approximates f(xj�k;Mk)f(�kjMk).

Now, since we have assumed that the importance

sampling function is a multivariate Gaussian, we write

h(�k) =
1

(2�)
d
k

2 jRkj
1

2

e�
1

2
(�k��

k
)
T

R�1

k
(�k��

k
) (10)

where �k and Rk are the mean vector and the covari-

ance matrix of �k, respectively, and dk is the length of

the vector �k. This implies

Îk =
(2�)

d
k

2 jRkj
1

2

B

BX
b=1

f(xj�bk;Mk)f(�
b
kjMk)
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and the selection rule becomes

M
k̂
= arg min

k=1;2;:::;q

(
� ln

 
BX
b=1

f(xj�bk;Mk)

�
f(�bkjMk)

e
�

1

2

�
�
b
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��

k
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2
ln(2�) �

1

2
ln jRkj

)
:

(12)



To implement the selection according to (12), a critical

step is the sampling of �bk. As was mentioned before,

it is important that the Gaussian distribution of �bk is

as close as possible to f(xj�bk;Mk) f(�
b
kjMk). We pro-

pose that the sampling of �bk is done by the bootstrap

method.

4. IMPLEMENTATION BY THE

BOOTSTRAP METHOD

The bootstrap method is a computer based technique

that is generally applied to evaluate the performance

of various estimators. When it was originally proposed,

the underlying assumptions were that the observed data

are independent and identically distributed [4]. Since

then, however, the method has been generalized to treat

problems that include stochastic processes where the

data are highly dependent [4], [5]. Its implementation

does not require theoretical calculations, and it can read-

ily be applied to any data model irrespectively of the

model's complexity.

In our problem, we want to sample from a multivari-

ate Gaussian, and then apply the so obtained samples

in (12). The bootstrap, however, does not guarantee

that the samples come from a Gaussian distribution.

Instead, we approximate the distribution of the boot-

strap samples by a Gaussian whose mean vector �k and

covariance matrix Rk are determined from �
b
k. They

are found from

�k =
1

B

BX
b=1

�bk (13)

and

Rk =
1

B

BX
b=1

(�bk � �k)(�
b
k � �k)

T (14)

where B is the number of bootstrap samples. Clearly,

in cases where the Gaussian approximation is inappro-

priate, this approach is invalid.

The bootstrap is applied as follows. First we �nd

the estimates of the model parameters, �̂k. Then using

these estimates and the residuals from the original data,

we generate B sets of bootstrap data x�b, which are sub-

sequently used for parameter estimation as if the x�b's

were the measured data. From each data set then, we

obtain an estimate, �̂
b

k, which is used in the evaluation

of the mean vector �k and covariance matrix Rk, and

later in the computation of (12).

5. SIMULATION RESULTS

We tested the MAP rule by performing three exper-

iments. In the testing we included the AIC and MDL

rules, which are typically used in everyday practice, and

compared them with the MAP. For the AIC rule we used

M
k̂
= arg min

k=1;2;:::;q

n
�2 ln f(xj�̂k;Mk) + 2dk

o
(15)

and for the MDL

M
k̂
= arg min

k=1;2;:::;q

�
� ln f(xj�̂k;Mk) +

dk

2
lnN

�
(16)

where �̂k is the maximum likelihood estimate of the

model parameters and N is the number of observed data

samples. It can be argued that this MDL rule is not

necessarily the correct one since its penalty for over-

parametrization is �xed to (dk=2) lnN regardless of the

model's structure. Here we use (16) anyway because it

is the rule that is typically applied by practitioners. We

refer to it as a `naive' MDL rule and denote it as `MDL.'

In the experiments the data were generated by the

following model:

xn = 1+ 100 n+ a2 n
2 +wn n = 0; 1; 2; :::;49 (17)

where the xn's are the observed data, and the wn's are

the noise samples. The noise samples were independent

and identically distributed according to the Gaussian

distribution with mean zero and variance one. The poly-

nomial coe�cients and the noise variance were assumed

unknown. In the three experiments the coe�cient a2
was varied. In the �rst experiment a2 = 0:0043, in the

second, a2 = 0:0076, and in the third, a2 = 0:0135.

There were �ve candidate models, and they were poly-

nomials of degrees zero, one, two, three, and four, re-

spectively. The number of bootstrap samples B was

equal to 200.

From the assumptions, we had �bk = [ab0 a
b
1 � � � abk�1

�2
b

]T , where abk = [ab0, a
b
1, ..., a

b
k�1]

T are the coe�cients

of the polynomial of k-th degree, and �2
b

is the noise

variance. We could also write

f(xj�bk;Mk) =
1

(2��2b)
N

2

e
�

1

2�2
b
(x�s(ab

k
))
T

(x�s(ab
k
))

(18)

where s(ak) is the signal vector whose n-th element is

given by sn = a0 + a1n+ :::+ ak�1n
k�1.

Next, we had to specify the priors f(�k), which in

general quanti�ed our prior knowledge about �k. In

our experiments we wanted to introduce as less infor-

mation about the model parameters as possible. The

Je�reys' noninformative priors were one possibility, but

they are improper and proportional to unknown con-

stants. Instead, we assumed that the f(�k)'s are equal

to a constant over the parameter space �k, that is

f(�bk) = C; �
b
k 2 �k: (19)



k = 1 k = 2 k = 3 k = 4 k=5

MAP 0 7 93 0 0

AIC 0 0 69 21 10

`MDL' 0 0 94 5 1

Table 1: Performance of the MAP, MDL, and AIC rules

in 100 trials (a2 = 0:0043). The correct model is M3.

k = 1 k = 2 k = 3 k = 4 k=5

MAP 0 0 100 0 0

AIC 0 0 70 14 16

`MDL' 0 0 92 6 2

Table 2: Performance of the MAP, MDL, and AIC rules

in 100 trials (a2 = 0:0076). The correct model is M3.

Note that this constant is identical for every prior (k =

1; 2; � � � ; q), which implies that the parameters' priors

did not a�ect the model selection.

In the experiments, we performed 100 independent

trials and the results are shown in Tables 1, 2 and 3.

The entries represent the number of times the MAP,

AIC, and `MDL' rules chose the models M1 { M5, re-

spectively, out of 100 trials. From the results we see that

the AIC did not perform well, even in the case when the

coe�cient a2 was relatively large (Table 3). The `MDL'

showed very good performance when a2 = 0:0043 (for

the smallest value of a2 in the three experiments), and

did not improve when a2 was increased, which does not

seem appropriate. When the coe�cient a2 is larger, it

should be easier to choose the correct degree of the poly-

nomial. The results then suggest that something could

be wrong with the penalty of the `MDL'. The MAP per-

formed perfectly in the second and third experiment and

was comparable to the `MDL' in the �rst experiment.

6. CONCLUSIONS

A model selection approach based on Bayesian theory

and the bootstrap method has been proposed. The prin-

ciple for model selection is the maximum a posteriori

probability. The approach does not require theoreti-

cal evaluation of penalties for overparametrization, and

it is straightforwardly implemented by exploiting (12),

where the samples of the model parameters are gener-

ated by the bootstrap method.

k = 1 k = 2 k = 3 k = 4 k=5

MAP 0 0 100 0 0

AIC 0 0 76 10 14

`MDL' 0 0 90 7 3

Table 3: Performance of the MAP, MDL, and AIC rules

in 100 trials (a2 = 0:0135). The correct model is M3.

7. REFERENCES

[1] P.M. Djuri�c, \Model Selection Based on Asymp-

totic Bayes Theory," 7-th IEEE Signal Processing

Workshop on Statistical Signal and Array Process-

ing, pp. 7-10, Quebec City, Canada, 1994.

[2] P.M. Djuri�c, \A Model Selection Rule for Sinusoids

in White Gaussian Noise," IEEE Transactions on

Signal Processing, vol. 44, pp. 1744-1751, 1996.

[3] P.M. Djuri�c, \A Novel Approach to Rank Deter-

mination of Multichannel Covariance Matrices," 8-

th IEEE Signal Processing Workshop on Statisti-

cal Signal and Array Processing, pp. 40-43, Corfu,

Greece, 1996.

[4] B. Efron and R. J. Tibshurani, An Introduction to

the Bootstrap, New York: Chapman and Hall, 1993.

[5] J. S. Hjorth, Computer Intensive Statistical Meth-

ods, Chapman & Hall, NY, 1994.

[6] M.H. Kalos and P. H.Whitlock,Monte Carlo Meth-

ods. New York: Wiley, 1986.

[7] R. Kass and A.E. Raftery, \Bayes Factors," Journal

of the American Statistical Association, vol. 90, pp.

773-795, 1995.

[8] M. A. Newton and A.E. Raftery, \Approximate

Bayesian Inference with the Weighted Likelihood

Bootstrap," Journal of the Royal Statistical Soci-

ety, B, pp. 3-48, 1994.

[9] J. Shao, \Bootstrap Model Selection," Journal of

the American Statistical Association, vol. 91, pp.

655-665, 1996.


