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ABSTRACT

We present a stochastic simulation technique for subset
selection in time series models, based on the use of indic-
ator variables with the Gibbs sampler within a hierarch-
ical Bayesian framework. As an example, the method is
applied to the selection of subset linear AR models, in
which only signi�cant lags are included. Joint sampling
of the indicators and parameters is found to speed conver-
gence. We discuss the possibility of model mixing where
the model is not well determined by the data, and the ex-
tension of the approach to include non-linear model terms.

1. INTRODUCTION

Until recently, research into time series modelling has
concentrated on those models which are analytically con-
venient, without necessarily justifying underlying assump-
tions such as linearity. With rapidly increasing computing
power, it is now possible to consider a much wider range
of models, including hybrids containing terms from sev-
eral non-linear model families. The problem becomes one
of subset selection | we wish to select the best subset of
terms from the pool available.

We will take a Bayesian approach, since this leads to
consistent model selection criteria and avoids the need to
introduce explicit penalisation of complex models. By se-
lecting models on the basis of posterior probabilities, we
also have the opportunity to incorporate any prior know-
ledge.

We wish to �t to a time series x a model which consists
of a number of terms with (possibly vector) parameters
�1; : : : �P . We associate a binary indicator i with each
term such that if j = 1 then the term with parameter
�j is included in the model; otherwise it is excluded. We
gather any parameters which are common to all models
into �. The most probable combination of terms, and
hence the model we wish to select, as represented by , is
then:

argmax


�
p(1; 2; : : : P j x) =Z

� � �

Z
�1;�2;:::�P ;�

p(�1; 1; �2; 2; : : : ;� j x)

d�1 � � � d�P d�
�

(1)
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If we have a pool of P candidate terms, there are 2P

possible combinations. For sizeable P , it becomes imprac-
tical to evaluate the probability of all subsets. To avoid
this, there is a variety of suboptimal search algorithms
(see e.g. [1, 2]). It is possible that our posterior distribu-
tions will be multimodal. This can cause problems with
search algorithms, as they tend to stop at local maxima.
Hence we will concentrate on stochastic methods.

In [3], an earlier stochastic simulation method is gen-
eralised to produce, for any given distribution �, an er-
godic Markov chain which has � as a limiting distribution.
The Gibbs sampler [4] is a special case of this Metropolis-
Hastings algorithm, in which each variable is sampled in
rotation from its fully conditional density:
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If we allow the  i to be multivariate, we have a multi-
move Gibbs sampler.

Returning to equation (1), a Markov chain can be con-
structed which moves around the model space by sampling
both the indicators and the other model parameters to
produce a sequence of states (1);(2); : : : , which con-
verges in the limit to produce (dependent) samples from
the posterior p( j x), thereby performing numerically
the integration of equation (1) [5]. From these sampled
states, we can obtain Monte Carlo estimates of the mar-
ginal posterior density of the indicators.

Both [6] and [7] use variations on this approach for
statistical model selection problems, but do not discuss
time series. [8] works with subset AR models using the
method of [6], in which disabled terms are never com-
pletely excluded, but are instead given a narrow prior.
We expand on the approach of [7], as completely remov-
ing disabled terms gives computational advantages.

It has been argued [6] that, as we are only interested
in the subsets with highest posterior probability, rather
than evaluation of the full posterior, a run of length� 2P

should su�ce; for all but the most degenerate multimodal
posteriors, this seems reasonable.

If variables are not independent, the Gibbs sampler
tends to converge slowly [9]. Since there is likely to be



strong interdependence between the indicator and para-
meter(s) of each term, we speed convergence by sampling
jointly from the indicators and their associated paramet-
ers, in a similar manner to that used for impulse detection
in [10, 11].

There is also interdependence between the paramet-
ers and indicators of di�erent terms. We can address this
by multivariate sampling of the indicators, in blocks of
size Q. Each iteration then requires the evaluation of the
conditional for 2Q combinations of terms. Varying Q al-
lows a trade-o� between the number of iterations required
for convergence and the computational complexity of each
iteration.

Following from [12], we sample the indicators in ran-
dom order, but sample the di�erent types of component
in a �xed sequence.

2. EXAMPLE

We now illustrate this method with a simple linear model.

2.1. Subset AR model

The subset autoregressive model [13] with maximumorder
P can be represented in terms of parameters ai:

xt = et +
PX
i=1

xt�i ai i (3)

where et is an i.i.d. Gaussian excitation sequence with
constant variance. With appropriate matrix and vec-
tor de�nitions [14], the conditional likelihood can be ex-
pressed as:

p(x1 j a;; �e;x0) = (2��2e )
�

N�P
2

exp
�
� 1

2
�
�2
e kx1 �X(a � )k2

�
(4)

where x0 contains the �rst P elements of x, and x1 the
remainder.

2.2. Priors

We use a Bernoulli prior for the indicators, p(i = 1) =
�. For the AR parameter values, we use a convenient
prior: independent zero-mean univariate Gaussians, all of
variance �p. Since the noise variance is a scale parameter,
we use a Je�reys' prior. With suitable bounds, this can
be made proper. Alternatively, an Inverse Gamma prior
could be used on �2e .

2.3. Conditional distributions

We have two types of sampling step:

au; u � p(au;u j x; ak;k; �e) (5)

�e � p(�e j x;a; ) (6)

where the subscripts (�)u and (�)k denote partitioning into,
respectively, those elements corresponding to terms whose
indicators are being sampled, and those which are cur-
rently being regarded as �xed.

The joint sampling operation of step (5) can be per-
formed in two steps:

u � p(u j x; ak;k; �e) (7a)

au � p(au j x;ak;; �e) (7b)

Note that step (7a) is not conditional on au. We �nd this
�rst, discrete, distribution from the likelihood by repeated
application of Bayes' rule and by marginalising au, giving:

p(u j x; ak;k; �e) / (2��2e )
�
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where l is the dimension of u, n1 is the number of com-
ponents of u which are `on', �p and Cp are the mean
vector and covariance matrix of the Gaussian prior p(au),
and:

Cs = (��2e Xu
T
Xu +C

�1
p )�1 (9)

�s = Cs(�
�2
e Xu

T (x�Xkak) +C
�1
p �p) (10)

In these terms, the distribution required for step (7b) is
simply the multivariate Gaussian

p(au j x;ak; ; �e) / N(au j �s;Cs) (11)

Sampling all of a is a simple operation, based on equa-
tion (11) with au = a and ak empty. Occasionally includ-
ing this step:

a � p(a j x;; �e) (12)

can further reduce the e�ect of interdependence between
AR parameters.

Finally, the fully conditional distribution of the noise
variance (eq. 6) is found to be an Inverse Gamma distri-
bution, for which well-known sampling methods exist.

3. RESULTS

The above sampler was implemented, and experiments
were performed using both synthetic and real data.

3.1. Synthetic data

800 samples of synthetic data were generated from a sub-
set AR model containing terms of order f1; 2; 3; 5; 7g. The
sampler was run with candidate terms up to order 9. The
initial values of the indicators, parameters and noise vari-
ance were zero. Indicators were sampled in triples.

Figure 1 shows the results of a typical run of 150 it-
erations, of which the �rst 50 were discarded as burn-in.
The top plot shows the mean value of each of the indic-
ators, which can be interpreted as the marginal posterior
probability of inclusion of each of the model terms. It
can be seen that the correct terms come out with clearly
higher probability.

An alternative method for choosing a model from this
data is to �nd the combination of terms which appears
most frequently [6]. This frequency should be an estim-
ate of the subset's posterior probability. The middle plot
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Figure 1: Synthetic data | simulation results after 150
iterations (including 50 iterations burn-in): (top) Nor-
malised indicator frequencies; (middle) Indicator subset
frequencies; (bottom) Raw indicator values.

shows that there is a clear favourite; this is the correct
model. The labelling corresponds to �gure 2.

The bottom plot shows the values of the indicators in
each iteration | those indicators which are switched on
are shown as white pixels.

It was found that, as is normal in Bayesian inference,
the above results were insensitive to variations of �p and
� over a wide range when the model was well determined
by the data.

3.2. Analytic results

To verify that the sequence of states being produced is
correct for subset selection, the posterior model probab-
ility was evaluated analytically for each of the possible
subsets. This exhaustive calculation is feasible only for
small P , and requires knowledge of the correct value of
�e. The same model was used as for x3.1, but this time
only 400 samples were generated.

Figure 2 shows histograms generated from the calcu-
lated evidence, together with the simulation results (with
�xed �e) for both a large and a small number of iterations.
It can be seen that the long run agrees closely with the
evidence, and the short run, although more coarse, would
lead to the selection of the same model.

3.3. Audio data

Figure 3 shows 1000 samples from an orchestral recording,
together with the values of the AIC and MDL criteria for
di�erent orders of non-subset AR models. The AIC would
lead to a choice of an AR(20) model, whereas the MDL
favours an AR(12) model. The AIC is known to tend to
over�t.
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Figure 2: Comparison of (top) analytically calculated pos-
terior model probabilities with (middle) simulation results
from 5000 iterations (including 500 iterations burn-in)
and (bottom) from 30 iterations (including 10 iterations
burn-in).

The �gure also gives the results of running the sampler
with candidate terms to order 40 for 300 iterations, dis-
carding the �rst 50 as burn-in. The highest frequency
subset, a plain AR(12) model, accounts for some 85% of
the post burn-in iterations.

4. NON-LINEAR MODELS AND

APPLICATIONS

It is straightforward to extend these methods to include
polynomial terms, forming a truncated Volterra series [15].
In the second-order case (with P lags), the modelling
equations take the form:

xt = et +
PX
i=1

xt�i ai i +
PX
i=1

PX
j=1

bij �ij xt�i xt�j (13)

which can be converted into matrix-vector notation as:

e = x1 �X
0(a0 � 0) (14)

where a0 contains both faig and fbijg, 
0 contains both

fig and f�ijg, and X
0 is a block diagonal matrix. Note

that this system is still linear in the parameters, and of
the same form as equation (4).

It should also be possible to include other non-linear
terms, with more parameters, such as thresholds [15].

Having developed a sampler for model selection, we
can incorporate extra steps to use the model to produce
any required output, such as forecasts or a reconstruction
of missing data.

In terms of equation (1), the required output can be
included in �. This approach has the advantage, other
than simplicity, that, in the event of model uncertainty,
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Figure 3: Orchestral recording (from top): (a) Signal; (b)
MDL (solid) and AIC (dotted) values for non-subset AR
models; (c) Normalised indicator frequencies; (d) Indic-
ator subset frequencies; (e) Raw indicator values.

the output will be based on processing using all the prob-
able models, rather than just the one with highest pos-
terior probability, i.e.

p(� j x) =

Z
� � �

Z
�1;�2;:::�P

X
� � �
X

1;2;:::P

p(�1; 1; : : : j x) d�1 � � � d�P
(15)

This approach has been used with a linear model for signal
reconstruction in the presence of impulsive and continu-
ous noise [16]; the ability to incorporate non-linear model
terms should make it possible to reconstruct audio which
has su�ered distortion by a poor recording chain [17].

5. CONCLUSIONS

We have shown, using the example of a simple linear
model, that this method provides a means of avoiding
the 2P combinatorial explosion associated with subset se-
lection. The MCMC framework has the advantage that it
can be applied to models which are not analytically tract-
able. Furthermore, it allows much exibility in producing
output, and copes elegantly with model uncertainty.
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