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ABSTRACT

Frequency invariant beamforming is array processing in which
the spatial response remains constant (with respect to frequency)
within a wide frequency band of interest. In this paper we present a
new algorithm for adaptive broadband beamforming which solves
a minimum variance beamforming problem, with a structural fre-
quency invariant beampattern constraint. This constraint allows us
to reduce the dimension of the adaptation problem. The proposed
algorithm is a block adaptive LMS algorithm which uses only a
fraction of the parameters of a conventional fully adaptive array.
Hence, the computational complexity is reduced and the conver-
gence speed is increased. A simulation example is presented to
demonstrate the new algorithm.

1. INTRODUCTION

Adaptive array processing techniques which minimise the contri-
butions of strong interferers from unknown directions while pass-
ing signals from a chosen look direction are important in applica-
tions such as radar, sonar, and communications systems.

One algorithm which solves this problem is the constrained
LMS algorithm of Frost [1]. For an array ofN sensors each feed-
ing anL tap FIR filter, Frost’s algorithm usesL free parameters
to constrain the response in the look direction, and the remaining
(NL � L) parameters to minimise the output power and thereby
the contributions of the interferers. Hence, Frost’s algorithm is a
two-dimensional algorithm (over spaceN and timeL).

It is well known that the convergence rate of the LMS algo-
rithm is related to the eigenvalue spread of the data covariance
matrix [10]. However, it is becoming apparent that the conver-
gence rate is also influenced by the number of free parameters [11].
In this paper we show that, in broadband signal environments in
which the desired signal and the interference signals cover approx-
imately the same bandwidth, the minimum variance beamforming
problem can be reduced to a one-dimensional problem through use
of a frequency invariant beamforming structure. By reducing the
number of adaptive parameters the computational complexity and
convergence time are reduced. This is verified by a numerical sim-
ulation.
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2. FREQUENCY INVARIANT BEAMFORMING

A frequency invariant beamformer (FIB) is an array processing
structure in which the resulting spatial response is constant (with
respect to frequency) within a wide frequency band. Several meth-
ods of designing such a beamformer have been proposed, e.g. [2,
4–7]. We will use the method of [4], since this FIB is parame-
terised by a single vector of beam shaping coefficients which de-
fine the frequency invariant beampattern over the entire frequency
band [8]. This property is demonstrated later, and makes this par-
ticular FIB well suited to adaptive implementation.

Consider a linear array ofN sensors with a filter on each sen-
sor. The filter outputs are summed and filtered to give the follow-
ing spatial response for a farfield signal arriving from a direction�
(measured relative to broadside)

r(�; f) = Hs(f)

NX
n=1

gnHn(f) e
j2�f�n(�); (1)

where�n(�) is the relative propagation delay to thenth sensor,
Hn(f) is theprimary filter on thenth sensor,Hs(f) is thesec-
ondary filter, andgn is a spatial weightingterm to account for
possibly nonuniform sensor spacings. The number and positions
of the sensors should be chosen with regards to the specific band-
width required; see [4] for details. We now indicate explicit con-
straints onHn(f) andHs(f) to achieve a spatial response which
is frequency invariant within a wide bandwidth of interest.

The general idea of the FIB is that the active array size and
shape should be kept constant in terms of operating wavelength to
maintain a beampattern which is the same at all frequencies within
the bandwidth of interest. The primary filters perform the role
of maintaining a scale invariance property on the active aperture,
whereas the secondary filter normalises the peak array response.
The secondary filter response isHs(f) = �f , where� is a con-
stant.

The primary filters must satisfy a dilation property [4] and, to
ensure the active array size remains constant in terms of wave-
length, thenth primary filter should be bandlimited tofn =

Pc=xn, wherec is the speed of wave propagation andP is the
active array size (measured in wavelengths). Equivalently, the in-
put to thenth primary filter is bandlimited tofn (to avoid aliasing),
and thenth primary filter response can be expressed as [8]

Hn(f) =
X
l

h[l]e
�j2�fTnl = h

H
 n(f); (2)



whereTn is the sampling period of thenth sensor,h is anL vec-
tor of beam shaping coefficients, and n(f) is anL dimensional
dilation vector. If the beam shaping coefficientsh produce some
desired primary filter responseHref(f) at some locationxref with a
sampling periodT , thenTn = Txn=xref. This formulation lends
itself to implementation using multirate filtering.

Let �(f) = Hs(f)[g1 1(f); : : : ; gN N (f)] be anL � N
matrix. The spatial response (1) can now be expressed as

r(�; f) = h
H
�(f)a(�; f)

� rFI(�); 8f 2 [fL; fU ]; (3)

where rFI(�) is a frequency invariant response,[fL; fU ] is the
bandwidth of interest, and

a(�; f) = [e
j2�f�1(�); : : : ; e

j2�f�N (�)
]
T

is the array direction vector. Note that (3) holds for any set of beam
shaping coefficientsh.

Because the beam shaping coefficientsh are independent of
frequency, we have the following frequency invariance property

�(f)a(�; f) � �(f0)a(�; f0); 8�; 8f 2 [fL; fU ]; (4)

where f0 is a nominal frequency in the bandwidth of interest
(which we take as the centre frequency for convenience).

The importance of this formulation is that there is a single set
of coefficients which defines the spatial response over the entire
bandwidth of interest. Thus, if the coefficientsh are the param-
eters of an adaptive beamforming algorithm, the resulting beam-
pattern is constrained to be frequency invariant at all steps in the
adaptation process. Moreover, the number of coefficients is inde-
pendent of the number of sensors. This is the basis of the algorithm
presented in this paper.

3. OPTIMUM BEAMFORMER

The goal of adaptive beamforming is to preserve a desired signal
(usually from a chosen look direction) while minimising the con-
tributions from interfering sources. This is often achieved by min-
imising the beamformer output power while maintaining a chosen
frequency response in the look direction. In this section we derive
the optimum set of beam shaping weights, based on ideal knowl-
edge of the second order statistics of the received array data.

ConsiderD wideband farfield source signals impinging on a
linear array ofN sensors from directions� = [�1; : : : ; �D]. As-
sume that one of these signals is a desired signal which arrives
from the look direction�1, and the remaining(D � 1) signals
are treated as interference which should be rejected by the beam-
former. We assume the look direction is known exactly, otherwise
derivative constraints [9] could be included to provide robustness
for look direction mismatch.

The received array data is divided intoK blocks ofM sam-
ples,1 and anM point discrete Fourier transform is applied to each
block. We assume that this producesJ narrowband frequency bins
in the bandwidth of interest,fi 2 [fL; fU ]; i = 1; : : : ; J . For the
kth block, the array data in theith frequency bin is

y(k; fi) = A(�; fi) s(k; fi) + n(k; fi); (5)

1For non-stationary sources, there is a fundamental trade-off between
the block size and the tracking capability of the beamforming algorithm.

wherek = 0; : : : ; K � 1; andi = 1; : : : ; J . TheN �D source
direction matrix is

A(�; fi) = [a(�1; fi); : : : ; a(�D; fi)];

s(k; fi) is theD vector of source signals, andn(k; fi) is theN
vector of additive sensor noise (assumed to be uncorrelated with
the source signals). The data covariance matrix is

Ry(fi) = Efy(k; fi)y
H
(k; fi)g

= A(�; fi)Rs(fi)A
H
(�; fi) +Rn(fi); (6)

whereRs(fi) is the source covariance matrix, andRn(fi) is the
noise covariance matrix.

Assume we apply a FIB to the received array data (5), giving
a beamformer output

z(k; fi) = h
H
�(fi)y(k; fi): (7)

The expected beamformer output power in theith frequency bin is
therefore

Efjz(k; fi)j
2
g = h

H
�(fi)Ry(fi)�

H
(fi)h;

and the average expected output power is

Efjz(t)j
2
g = h

H
Rh; (8)

where

R =
1

J

JX
i=1

�(fi)Ry(fi)�
H
(fi)

=
1

J

JX
i=1

�(fi)A(�; fi)Rs(fi)A
H
(�; fi)�

H
(fi)

+�(fi)Rn(fi)�
H
(fi): (9)

Because of the frequency invariance property (4), this can be writ-
ten

R � �(f0)A(�; f0)RsA
H
(�; f0)�

H
(f0) +Rn;

(10)

where

Rs =
1

J

JX
i=1

Rs(fi)

is the frequency averaged source covariance matrix, and

Rn =
1

J

JX
i=1

�(fi)Rn(fi)�
H
(fi)

is the frequency averaged noise covariance matrix. Hence, the data
covariance matrices may be averaged across the frequency band of
interest while preserving the source direction information.

The optimum beam shaping weights are found by minimising
the output power while preserving the desired signal from the look
direction. This is formulated as the following constrained minimi-
sation problem

min
h

hHRh (11a)

subject toCHh = 1; (11b)



whereC = �(f0)a(�1; f0) is a constraint vector which main-
tains a unity response in the look direction. Note that because the
beamformer has a frequency invariant spatial response, a broad-
band unity response is imposed in the look direction by imposing
a constraint at a single frequency.2

The solution to the well-known constrained minimisation
problem (11) is

h =
R
�1
C

CHR
�1
C
: (12)

4. ADAPTIVE ALGORITHM

Having derived the optimum beam shaping coefficients in the pre-
vious section, we now describe an algorithm which converges to
these coefficients in an environment in which noa priori knowl-
edge of the locations of interfering signals is available.

The constrained optimisation problem (11) is identical to that
considered by Frost [1]. Frost developed an LMS algorithm to
minimise the output power of a broadband array while maintaining
a chosen frequency characteristic in the look direction. We may
thus apply Frost’s algorithm to the adaptive frequency invariant
beamforming problem.

The proposed algorithm is summarised as

h0 = q (13a)

hk+1 = Q
h
hk � �bRkhk

i
+ q; (13b)

wherehk is the set of beam shaping coefficients to use for thekth
data block,� is the adaptation step size,

q = C[C
H
C]

�1

is anL vector,
Q = I�C[C

H
C]

�1
C
H

is anL� L projection matrix, and

bRk =
1

J

JX
i=1

�(fi)y(k; fi)y
H
(k; fi)�

H
(fi)

is anL� L matrix used to estimateR for thekth block of data.
We will refer to this as the FIB algorithm.

5. EXAMPLE

We now present a design example to evaluate the performance
of the FIB algorithm compared with the conventional Frost algo-
rithm.

The design was for a linear array ofN = 12 sensors with
an inter-sensor spacing of�U=2 (where�U is the wavelength cor-
responding to the maximum frequency of interest) withL = 8
for both the Frost and FIB algorithms (hence there are 96 param-
eters for the Frost beamformer). The FIB was designed to have
a frequency invariant response over the normalised bandwidth of
[0:35; 0:45]. The signal environment consisted of two plane wave
sources, with flat frequency spectra over the bandwidth of interest.

2For strong signals from the look direction a single frequency constraint
may be insufficient to maintain a unity response in the look direction. The
reason for this is beyond the scope of this paper, and will be treated in a
future paper [3].
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Figure 1: Comparison of output power convergence for example
FIB and Frost algorithms (see text for description).

The desired signal was at0� with an SNR of 0 dB, and an uncor-
related interferer with SNR of 30 dB was present at30�. White
Gaussian noise was modelled at the input of each sensor. For
the FIB algorithm, the received data was partitioned into blocks
of 64 samples and discrete Fourier transformed to produce 6 fre-
quency bins within the design band. The adaptation step size was
� = 1� 10�7 for both algorithms.

Figure 1 shows a comparison of the convergence rate for both
algorithms. Note that the FIB algorithm is shown at discrete sam-
ple times, corresponding to the end of each block of processed
data.

Figure 2(a) shows the beampatterns produced by the FIB al-
gorithm initially (dotted), after 5000 data samples (solid), and the
optimum beampattern (dashed). The final adapted beampatterns
(after 5000 sample periods) are shown in Fig. 2(b) at 25 frequen-
cies within the design band. The corresponding results for the
Frost algorithm are shown in Figures 3(a) and (b). Observe that
the FIB beampatterns exhibit little variation with frequency.

As a simple quantitative test of the relative complexity of the
two algorithms, we counted the number of floating point opera-
tions required for the 5000 sample simulation shown in Fig. 1. It
was found that the FIB algorithm required less than 1% of the flops
required by the Frost algorithm.

6. CONCLUSIONS

In this paper we have presented a new algorithm for adaptive
broadband beamforming. This algorithm solves a minimum vari-
ance beamforming problem, but with a structural constraint that
ensures that the beampattern is frequency invariant at each step in
the adaptation process. Simulation results indicate that the pro-
posed algorithm has significant speed of convergence advantages
over conventional broadband beamforming methods. A theoreti-
cal analysis of these quantities is currently underway and will be
presented in a future paper [3].
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(a) Frequency averaged beampatterns.
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(b) Final beampatterns at 25 frequencies within
the design frequency band.

Figure 2: Example of FIB algorithm (see text for description).
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