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ABSTRACT

The idea of applying H1 estimation techniques to the
\array uncertainties problem" is motivated by the fact that
H1 estimation is robust to model uncertainties and lack of
statistical information with respect to noise. In this paper,
a new state space model for the received signal of a general
array of sensors is developed which, in contrast to existing
models, is capable of handling the simultaneous presence
of di�erent type of uncertainties (e.g., gain, phase, loca-
tions, mutual coupling, etc, uncertainties). Based on this
state-space model, formulated in an H1 framework, two
new robust array signal processing techniques have been
proposed which mitigate the degrading e�ects of array un-
certainties.

1. INTRODUCTION

Direction of arrival (DOA) estimation by Signal Subspace
type methods requires knowledge of the array covariance
matrix and an exact characterisation of the array in terms
of geometry (sensor location), sensor gain and phase, mu-
tual coupling between the array elements etc. In practice,
however, neither of these quantities is known precisely. De-
pending on the degree to which they deviate from their
nominal values, serious performance degradation may re-
sult. Furthermore, all the direction �nding based signal-
copy algorithms estimate the signals by forming a weighted
linear combination of the array outputs. In general, the
weight vector involves knowledge of the array response and
the directions of arrival of some or all of the signals. Any
errors in the array model a�ect not only the weight vec-
tor directly, but also the accuracy of the DOA estimates,
and thus can seriously reduce the overall performance [1].
There is, therefore, considerable practical interest in the de-
velopment of array processing techniques which are able to
operate in the presence of array uncertainties and the H1

formulation proposed in this paper is an attempt to address
this problem.

In this paper, to apply H1 estimation techniques to ar-
ray signal processing, a new state-space model for the re-
ceived signal of a general array of sensors is developed. The
proposed model can cope with directional gain and phase
uncertainties (which need not be identical from sensor to
sensor), sensor location errors, mutual coupling and noise
e�ects, etc. These uncertainties/errors are de�ned in the
Section-2 of the paper. In Section-3, some of the basic or-

thogonality and covariance conditions which are induced
by the state-space assumptions are identi�ed. The global
linear relation between the observations, the initial state
vector, the process noise and the measurement noise are
then highlighted. In addition, the so-called observability
and impulse response matrices associated with our model
are introduced and it is shown that the columns of observ-
ability matrix is nothing more than the manifold vectors.
These concepts enable us to show the agreement between
the proposed state-space model and the conventional array
data model. In Section-4, the concepts of previous section
are then placed in the framework of an H1 approach while
in Section 5, two representative array processing examples
are presented. Finally, in Section 6, the paper is concluded.

2. MODELLING THE ARRAY SIGNAL

Consider an uncalibrated (or partially calibrated) array of
N sensors operating in the presence of M narrowband sig-
nals. The received signal vector x(t) can be modelled as

x(t) =
�
I+ ~C

� ��
G+ ~G

�
�
�
A+ ~A

��
m(t) + n(t) (1)

where

8>>>>><
>>>>>:

� denotes Hadamard product
m(t) is the message vector-signal
n(t) represents the additive white Gausian Noise
~C is the mutual coupling uncertainty matrix
~G is the array gain and phase error matrix
~A is the sensor position error matrix

In Equation-(1) G and A are N�M complex matrices with

their ith column de�ned as 
(�i; �i)�e
j (�i;�i ) and e�jr

T k
i

respectively where

ki =
2�
�
[cos(�i) cos(�i); sin(�i) cos(�i); sin(�i)]

T
;

r is the array location matrix, and the vectors 
(�i; �i) and
 (�i; �i) denote the gain and phase response of the array
elements for a signal incident from azimuth �i and elevation
�i. In this investigation Equation-(1) will be used as the
starting point to arrive to an alternative modelling and then
to propose a new approach for improving the performance
of array signal processing algorithms operating in the pres-
ence of array uncertainties. The assumption is simply that
both the array uncertainties and the noise signals can be
considered as bounded energy signals. This implies that the
e�ects due to the presence of array uncertainties can be re-
duced by using a minimax optimal estimation algorithm, or
more speci�cally, an H1 optimal approach.



3. PROPOSED STATE-SPACE MODEL

The proposed state space model is based on the array signal
vector x(t) given by Equation-(1). However, by reorganis-
ing this equation, the direction gain and phase errors may
be grouped together and represented, for the jth sensor, by
a scalar vj. Furthermore the array location errors, mutual
coupling and noise e�ects may be grouped together in an
M � 1 vector uj. In state-space terminology the scalar vj
is the measurement noise while the vector uj is the pro-

cess noise associated with the jth sensor. In this case the
elements xj; j = 1; : : : ;N , of the received signal x(t) at a
particular time t obey the following state space model:

sj+1 = diag
�
aj+1 � a�j

�
sj +Bjuj; j 2 [0;N � 1]

xj = gT
j
sj + vj; j 2 [1;N ]; s0 = m(t)

(2)

where

8><
>:

sj 2 CM�1denotes the state of the jth-sensor

aj =
�
jthrow of A

�T
g
j
=

�
jthrow of G

�T
In Equation-(2) the matrix

�
diag

�
aj+1 � a�j

��
2 CM�M is

known as the state transition matrix, while B = � � I 2
RM�M , where � is a positive constant which imposes a
bound on the process noise uj. It is assumed that the vari-
ables fujg, fvjg, and fs0g obey the following relationship

E

8<
:
"
s0
ui
vi

#
�

"
s0
uj
vj

#H9=
; =

"
Rmm 0 0
0 Qi�ij P i�ij
0 PHi �ij �i�ij

#
(3)

where �ij denotes the Kronecker delta function. Note
that if there are no uncertainties in the array system then
uj = 0; 8 j; and vj only represents the additive noise. Var-
ious important orthogonalities and covariance properties
of the model are illustrated in the following two lemmas.
These lemmas enable us to show the agreement between
the proposed state-space model and the conventional array
data model.

Lemma 1 (Basic Orthogonality Properties)

In the proposed model we can assert that

(i) Efui � s
H
j g = 0 and Efvi � s

H
j g = 0T , 8 i � j

(ii) Efui � x
�

jg =

�
P i i = j

0 i > j

(iii) Efvi � x
�

jg =

�
�i i = j

0 i > j

(iv) Efu
i
� sH0 g = 0 i�

�
Efu

i
� sH

i
g = 0 8 i; and

diag
�
a
i+1 � a�

i

�
= nonsingular 8 i

2

By introducing the so-called observability (O =G�A) and
(lower triangular) impulse response (�) matrices associated
with the proposed model, the variables fs0; u; vg can be
related with the following expression

x = O � so +� � u + v = [O �]

�
so
u

�
+ v (4)

where u =
�
uT0 ; : : : ; u

T
N�1

�T
, v = [v1; : : : ; vN ]

T
and

� =

2
664

�H10 0T : : : 0T

�H20 �H21 : : : 0T

...
...

. . .
...

�HN0 �HN1 : : : �HNN�1

3
775 (5)

with �Hij = gT
i
��(i; j + 1) �Bj. The following lemma pro-

vides the framework for �nding a global expression for the
covariance matrix Rxx based on the linear relation given by
Equation-(4).

Lemma 2 (Data Covariance Matrix Modelling)

The covariances of the state variables can be computed as
follows

Efsi � s
H
j g =

(
�(i; j) ��j i > j

�i ��
H(j; i) i < j

�i i = j;

(6)

where

�i+1 = diag
�
ai+1 � a

�

i

�
��i�diag

�
ai+1 � a

�

i

�H
+Bi�Qi�B

H
i ;

(7)
and

�(i; j) = diag
�
ai � a

�

i�1

�
: : :diag

�
aj+1 � a

�

j

�
; �(i; i) = I:

(8)
Furthermore the covariances of the element of received sig-
nal fxjg are

Efxi � x
�

jg =

8<
:

gT
i
��(i; j + 1) �Dj i > j

DH
i ��H(j; i+ 1) � g�

j
i < j

�2i + gT
i
��i � g

�

i
i = j;

(9)

where

Di = diag
�
ai+1 � a

�

i

�
��i � g

�

i
+Bi � P i: (10)

Finally the array covariance matrix Rxx is given by

Rxx = O ��0 � O
H + [� I]

�
Q P

PH Rvv

��
�H

I

�
; (11)

where Q = diag(Q0; : : : ;QN�1); Rvv = diag(�21; : : : ; �
2
N);

P = diag(P 0; : : : ; PN�1): 2

It is important to point out that Equation-(7) is the dis-
crete space (or time) Lyapunov recursion. Further-
more, if P i = 0; i = 0; : : : ;N � 1, then

Rxx = O ��0 � O
H
+� �Q ��H +Rvv: (12)

In addition ui = 0; i = 0; : : : ;N � 1 (which means that
Q = 0), then

Rxx = O ��0 � O
H +Rvv: (13)

In this case �0 = Rmm and the columns of observability
matrix are the manifold vectors (O =G�A), therefore the
output covariance matrix can be written as

Rxx = (G�A) �Rmm � (G�A)H +Rvv: (14)

It is clear from the Equation-(12) in conjunction with
Equation-(13) that the terms � �Q � �H and Rvv include
the array uncertainties.



4. AN H1 APPROACH TO THE PROPOSED

STATE-SPACE MODEL

The H1 estimation methods can be seen as a powerful and
robust solution to handle array uncertainties and noise ef-
fects with limited statistical information. The idea is to
come up with estimators that minimize (or in the subopti-
mal case, bound) the maximum energy gain from the dis-
turbances to the estimation errors. This will guarantee that
if the disturbances are small (in energy) then the estima-
tion errors will be as small as possible (in energy), no matter
what the disturbances are. In other words the maximum en-
ergy gain is minimized over all possible disturbances. The
robustness of the H1 estimators arises from this fact.
By using the above state space model the objective is to

estimate, using the array data x(t), some linear combination
of the states, i.e.,

zi = Li � si; (15)

where Li is known. Let F(:) be the functional which rep-
resents this estimation process, i.e.,

ẑi = F(x1; x2; : : : ; xi); (16)

which indicates that the last element of the vector ẑi (i.e.,
the ith element) can be estimated as a function of the re-
ceived signals at time t from sensor�1 (i.e. x1) up to and
including the sensor�i (i.e. xi). Let�0 be a given positive-
de�nite matrix and choose any initial estimate for s0, which
we shall denote by ŝ0. De�ne the weighted initial state error
~s0 as well as the estimation error ei as follows�

~s0 � �
1=2
0 (s0 � ŝ0);

ei � ẑi � Li � si:
(17)

For every sensor i, de�ne the ratio:

r(i) =

Pi

j=1
eHj � ej

k~s0k
2
2 +

Pi

j=1
uHj � uj +

Pi

j=1
v�j � vj

(18)

so that r(i) is bounded, for every ŝ0, u(:) and v(:), by a given

positive constant �2, say,

r(i) < �
2 for 1 � i � N (19)

The estimator F(:) that satis�es the Equation-(19) is called
H1 aposteriori estimator.
Thus assuming that there are N observations available,

we collect the estimation error ei into a column vector,

e(t) 2 C(N+1)M�1, i.e.,

e(t) =
�
e
T
0 ; e

T
1 ; : : : ; e

T
N

�T
(20)

Furthermore the noise sequences and the initial state
estimation-error form another column vector, d(t) 2
C((N+1)M+N)�1, i.e.,

d(t) =

��
�

1=2
0 ~s0

�T
; u

T
0 ; v1; u

T
1 ; v2 : : : ; u

T
N�1; vN

�T
(21)

It is clear that d(t) contains the disturbance signals (these
are signals that we have no control over) while e(t) contains

the resulting estimation errors (these are the errors that re-
sult from the solution). Now if the estimator F(:) exist, it
should induce a mapping, say TN (F), from d(t) to e(t). The
condition r(N) < �2, when satis�ed, will therefore guaran-
tee that the 2-induced norm of TN (F) is bounded by �. In
this case, we say that the level of robustness is �.
The H1 aposteriori estimator F(:) can be found by using

Theorem-1 from [3], it can be shown that the signal ẑj can
be estimated as follows

ẑj = Lj � ŝj; (22)

where ŝj is recursively computed using the following expres-
sion

ŝ
j+1 = diag

�
a
j+1 � a

�

j

�
ŝ
j
+K

j+1(xj+1�g
T

j+1
diag

�
a
j+1 � a

�

j

�
ŝ
j
);

(23)

with8>>>>>>>>>><
>>>>>>>>>>:

ŝ0 = (G �A)# x(t) = initial guess

K
j+1 = Pj+1g

�

j+1
(1 + gT

j+1
Pj+1g

�

j+1
)�1

Pj+1 = diag
�
a
j+1 � a�

j

�
Pjdiag

�
a
j+1 � a�

j

�H
+BjB

H
j

�diag
�
a
j+1 � a�

j

�
Pj

�
g�
j
L
H
j

�
R
�1
e;j

�
gT
j

Lj

�
Pjdiag

�
a
j+1 � a�

j

�H
= Riccati recursion equation

Re;j =

h
1 0T

0 ��2I

i
+

�
gT
j

Lj

�
Pj

�
g�
j
L
H
j

�
P0 = �0

Note that for a given � > 0 and if the transition matrices
are nonsingular (in our case the matrices diag

�
aj+1 � a�j

�
are always non-singular) then the above solution exists if
and only if

P
�1
j + g

�

j
g
T

j
� �

�2
L
H
j Lj > 0; j = 0; : : : ; i: (24)

We shall assume, without loss of generality, that �0 has
the special form �0 = �I (= P0), where � is a positive
constant.
The above procedure can be used in conjunction with

MuSIC algorithm to provide an improved set of direction
estimates or in conjunction with a signal-copy beamformer,
to provide a good copy of the desired signal. In the �rst
case (MuSIC) the matrix Li is modelled to represent the
gain/phase vector of the i-th sensor (i.e., Li = gT

i
) and

Equation-(22) provides the uncorrupted received signal-
vector z(t) while the initial directions are provided by Mu-
SIC algorithm operating with the nominal values of an un-
calibrated array. In the second case (beamformer) the ma-

trix Li is the diagonal matrix diag
�
ejr

T
i
k
1 ; : : : ; ejr

T
i
k
M

�
and the copy of the desired message signal is taken to
be average of the linear combinations of the states, i.e,

m̂(t) = 1
N

PN

j=1
ẑj .

5. REPRESENTATIVE EXAMPLES

Consider the planar circular array of six isotropic antennas,
with antenna-locations described by the following matrix
(in meters):

r =

"
15:22 24:79 9:57 �9:57 �23:1 �23:1
19:84 �3:27 �23:1 �23:1 �9:57 9:57
0 0 0 0 0 0

#T



We assume that the array operates in the presence
of mutual coupling e�ects (uncertainties) with each sen-
sor signi�cantly coupled with its nearest neighbours,
while the coupling with other sensors can be ig-
nored. Furthermore, consider that there are also
gain, phase and location uncertainties (in meters) which
can be described as follows:

~
 = [0; 0:3935; 0:4674; 0:3658; 0:5704; 0:0331]T ;

~ = [0o; 11:5623o; 11:4305o; 7:5401o; 10:6857o; 6:7323o]T ;

~r =

"
0 0:0668 0:6872 0:9305 0:5266 0:6543
0 0:4179 0:5894 0:8457 0:0918 0:4159
0 0 0 0 0 0

#T

We assume that the above array con�guration operates
in the presence of two equipower uncorrelated sources at
(110o; 0o) and (130o; 0o) and the signals are sinusoids of
amplitude

p
2 and normalised frequency of 0:2 (signal fre-

quency is 15.04 MHz). The background noise power is 20dB
below the source power and the received signal is formed by
100 snapshots. The nominal gain and phase of the anten-
nas are assumed to be 1 and 0 respectively. The mitigation
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Figure 1. Dashed Line - MuSIC SpectrumBEFORE

and Solid line - MuSIC Spectrum AFTER Applica-

tion of the Proposed Approach

of the degrading e�ects of array uncertainties on the per-
formance of the MuSIC is illustrated in Figure-(1), with
dashed line representing the MuSIC spectrum applied to
the original data collected by uncalibrated array while the
solid-line denoting the MuSIC spectrum applied to the \�l-
tered" data after the H1 approach has been used. In this
example, for the implementation of the proposed approach
the matrix Li becomes a M � 1 vector representing the
gain/phase response gT

i
of the ith sensor. It is clear that

the array uncertainty e�ects are reduced after the appli-
cation of the proposed algorithm and approximately 15dB
improvement is achieved at peak of the MuSIC spectrum.

In the second example we illustrate the robust per-
formance of the signal copy algorithm and assume that
the source at (130o; 0o) provides the signal of inter-
est and is fully correlated with the interference at
(110o; 0o). In this case, the matrix Li is replaced by

diag
�
ejr

T
i
k
1 : : : ; ejr

T
i
k
M

�
, where nominal locations and the

estimated DOAs such as (128:5o; 0o) and (109:5o; 0o) are
used. Figure (2) illustrates the result (solid line) of the
proposed approach for the above uncalibrated array. The
dotted line in this �gure illustrates the true signal while on
the same �gure the results using Wiener-Hopf processor has
been also plotted (dashed line) for comparison. It is appar-
ent from this �gure that the proposed algorithm is robust
to calibration uncertainties and can also handle coherent
sources whereas the Wiener-Hopf beamformer totally fails.
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Figure 2. Solid line - Estimated Signal Amplititude

Using the Proposed Algorithm, Dot-Dot line - True

Signal Amplititude, and Dashed line - Estimated

Signal Amplititude Using Wiener-Hopf.

6. CONCLUSION

In this paper a new array-signal state space model has been
developed for a general array geometry which can handle
the simultaneous presence of di�erent type of uncertainties.
By introducing two lemmas we have shown the agreement
between the proposed state-space model and the conven-
tional array data model approach. The proposed approach
has been used in conjunction with the MuSIC algorithm and
then in conjunction with a beamformer in order to mitigate
the simultaneous degrading e�ects of �nite sampling and
imprecise modelling of an antenna array and spatial noise
statistics.
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