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ABSTRACT

We present a maximum likelihood approach for calibrating

sensor arrays in the presence of mutual coupling, channels

gain and phase mismatch and array geometry uncertainties

using measured steering vectors of uncertain locations. The

estimated perturbation parameters is used to calibrate the

array manifold, hence enabling many high resolution array

processing algorithms to attain their potential advantages.

We present two methods for optimizing the highly nonlinear

and multimodal ML cost function. The �rst method is lin-

earized local gradient search algorithm. The second method

is derived from combining the fast local search of gradient

methods with the nonlinear global search ability of Genetic

algorithm. The resulting hybrid optimizer is both fast and

globally converging. Simulation results are presented to il-

lustrate the usefulness of the proposed approach.

1.. INTRODUCTION

To enable most high resolution algorithms (e.g.[1] and ref-
erences therein) to reach their potential usefulness, array
calibration is necessary to compensate the impreciseness of
the array manifold. In this paper, we address the problem
of calibrating array perturbations that results from array
geometry uncertainties, mismatch in the channel gain and
phase mismatch, and mutual coupling. Typically these are
the main sources of array perturbations that can seriously
degrade most high resolution algorithms performance.
Several researchers have addressed this problem and pro-

posed parametric methods to calibrate the array manifold
(e.g. [6][4][5]). Unfortunately most methods have limited
applicability as they are formulated to deal with a few but
not all of the array perturbations considered herein. Robust
estimators based on Bayesian approach has been proposed
recently and can be applied to very general array pertur-
bation models[3]. However these methods require a priori

knowledge of the perturbation parameters statistics. This
may limit their potential usefulness. Moreover in the likely
case of unidenti�able perturbation parameters, the limiting
Cramer-Rao lower bound of the perturbation parmeters are
non-zero and increase with the variance of the perturbation
parameters[2].
Recently another class of calibration algorithms was pro-

posed. Array calibration is achieved by modeling the ar-
ray perturbations as deterministic parameters and estimat-
ing them from a set of measured steering vectors. In the
papers [7][8], methods for estimating the combined array

perturbations from mutual coupling and channel mismatch
were reported. See and Ng in [10][9][11] extend these meth-
ods include the case of uncertainties in the array geome-
try. The approach of using measured steering vectors ap-
pears reasonable in many situations. In general, relatively
small number of calibration sources are needed and the ar-
ray calibration model is quite general and with physical
justi�cations[13]. Good calibration accuracies are therefore
expected.
So far these calibration methods hinge on the assumption

of having precise knowledge of the calibration source loca-
tions. In this paper, we address a more general case where
the calibration sources location are not known exactly. This
generalization o�ers the exibility to alleviate the need for
accurate DOA of calibration sources, particularly in situa-
tions where such information are not readily available and
remove inherent calibration inaccuracies from such errors.

2.. DATA MODEL AND PROBLEM

FORMULATION

The observation vector at the array output in the pres-
ence of mutual coupling and array channel mismatch can
be written as[13]

x(t) =

nX
i=1

Ca (�i;	) si(t) + n(t) (1)

with C =M� termed as Calibration Matrix. M 2 Cm�m

describes the self- and mutual- coupling of the sensors and
� is a complex m�m diagonal matrix depicting the e�ects
from array channels mismatch.
In this paper, we assume the calibration signals to be

continuous wave (CW) sources and the signal from each
calibration sources are spatially and temporally disjoint.
The steering vector measured using L independent snap-
shots from the ith calibration source located at �i can be
estimated using

am (�i) =
1

N

LX
i=1

r(t): (2)

The observation noise n(t) is assumed to be temporally and
spatially uncorrelated zero mean Gaussian process of covari-
ance �2nIm, we have

am (�i) = �iCa (�i;	) +w (3)



where �i is an unknown complex scaling factor and w =
1

L

PL

i=1
n(t) is a zero mean Gaussian variable and has co-

variance
�2
n

L
Im = �2wIm.

Given measurements from n temporally and spatially
disjoint calibration sources, fam(�i)g ; i = 1 � �n, we have
Am (�) � CN

�
CA (�;	)�; �2wIm

�
. We can cast the sen-

sor array calibration problem as the (maximum likelihood)
identi�cation of the unknown deterministic parameters by
optimizingnb	; b�; b�; bCo = arg min

f	;�;�;Cg

kAm (�)�CA (�;	)�k2
F
:

(4)
where Am (�) = [am (�1) ;am (�2) ; � � � ;am (�n)] and
A (�;	) = [a (�1;	) ;a (�2;	) ; � � � ;a (�n;	)].
It is important to examine the identi�ability of (4). We

note the parameters � and C are identi�able upto a com-
plex scaling constant. This indeterminacy is not important.
In general a scaled version C and � will not a�ect the appli-
cations of the sensor array signal processing, e.g. direction
�nding, beamforming and to some extent signal copy.

From (4) it su�ces to note � and 	 are not simul-

taneously identi�able since A(�;	) = A(�z;	z) where

f�i = �
z
i + �gni=1 ; � 2 (��; �] and, 	 is a rotated ver-

sion of 	y. This rotational ambiguity can be resolved by
a priori directional information such as the DOA of one of
the calibration sources or the direction from one sensor to
another[12]. In this paper, we assume a priori knowledge
of the DOA of one of the calibration sources. However, this
will not limit the proposed calibration methods to this case.
If other directional references are available, calibration can
still be achieved by �rst estimating the sensor positions and
calibration sources DOA(upto a rotation ambiguity). Direc-
tional reference will then be used to remove the rotational
ambiguity.
A more complex issue of parameter identi�ability is if

among these competiting parameters Cz 6= 1

�
C, �z 6= ��,

�z 6= � and/or 	
z
6= 	 there exist CA (�;	)� =

C
z
A(�z;	z)�z where � is some arbitrary complex con-

stant. Condition for their existence are di�cult to obtained
as it involves analysing highly nonlinear and complex rela-
tionships among 	; �;�;C. However from our extensive
computer simulations based on the maximum likelihood
methods proposed in next section, we did not �nd any case
of such non-identi�ability. In this paper we assume the data
model to be parameter identi�able.
The problem statement in this paper can be expressed as

follows. Given su�cient number of unique measured steer-
ing vectors and �1 to be known, array calibration problem
can be formulated as the maximum likelihood identi�cation
of the system parameters 	; ��; ��;C�
	; ��; ��;C

	
= arg min

f	;��;
�
�;Cg

kAm (�)�CA (�;	)�k2
F

(5)
with

�� = [�2; �3; � � � ; �n] ; � =

�
� 0

0 ��

�
: (6)

Note if � is known exactly, then C and � can be estimated
exactly, otherwise upto a complex non-zero scaling con-
stant. Following the tenet of number of equations versus
number of independent observations, the array calibration
problem considered herein is ill-posed unless the number of

equation bound n � d 2m
2
+2m�5

2m+1
e where d�e is the smallest

integer larger than �. This condition is necessary for the
existence of Cramer-Rao lower bound.

3.. MAXIMUM LIKELIHOOD METHODS

Direct minimization of multi-dimensional nonlinear (5) en-
tail searching a 2m2+2m+3n�5 parameter space. This is
computationally prohibitive even for small number of sen-
sors. A parsimonous parameter dimensionality can be ob-
tained by concentrating C analytically with its maximum
likelihood estimates

bCML = Am (�) ~AH
�
~A ~AH

��1
(7)

where ~A = A (�;	)�. The concentrated ML cost function
can be expressed as

b�ML = arg�min J (8)

where J = Tr(P?
~
A
Q), Q = Am (�)H Am (�) and P

?
~
A

=

In �
~AH

�
~A ~AH

��1 ~A. The vector parameters � is de�ned

by � =
�
�TR; �

T
I ;	

T ; ��T
�T

where �R = Re
�
vecd

�
��
��

and

�I = Imag
�
vecd

�
��
��
. Next we present two methods for

optimizing (8).

3.1.. Modi�ed Gauss-Newton Search Method

The modi�ed Gauss-Newton performs an iterative lin-
earized search � by

b�i+1ML = b�iML � �lH
�1

�b�iML

�
V

�b�iML

�
: (9)

H (�) and V (�) are the Hessian matrix and gradient vector,
respectively. The step size � = 0:5k is set by where choos-
ing k to be the smallest non-negative integer that minimizes
J i+1�J i to ensure J i is monotonically decreasing and con-
verge asymptotically to a local/global extrema.
An approximate Hessian matrix and gradient vector can

be expressed compactly [14]

H (�) � �2Re
n
B
T
�
�P

?
~
A
�
H
��E

T
�
H
�
B

o
(10)

V (�) = �2Re
�
vecd

�

1W


T
2

�	
(11)

respectively, where

B =

2
4 I2 


~In 0 0

0 I2 

~Im 0

0 0 ~In

3
5

� =
�
In;�jIn;�

H
Ax

H
;�

H
Ay

H
;�

H
�H

� =
�
1
T
2 
A (�;	) ;1T2 
 In;A�

�T
E = ~Ay

Q ~AyH
; W = P

?
~
A
Q ~AyH


1 =
�
~In; j~In;Ax

T~Im;Ay
T ~Im;�~In

�T




2 =
�
1
T
2 
A (�;	)~In;1

T
2 


~Im;~In
�T

Ax = j2�A (�;	)�sin; Ay = j2�A (�;	)�cos

A� = j2�

�
@a(�1;	

@�1)
� � �

@a(�n;	)

@�n

�
(12)

and �sin = diag([sin �1; sin �2; � � � ; sin �n)]
T , �cos =

diag([cos �1; cos �2; � � � ; cos �n)]
T .

3.2.. Modi�ed Gauss-Newton Genetic Algorithms

Search Method (MGNGA)

MGN exhibits fast local convergence. However it has small
region of global convergence and failed for initial estimates
with large deviations. This is not suprising as the cost func-
tion is expected to be highly nonlinear and multimodal and
linearized search such as MGN is likely to fail.
Nonlinear search techniques such as Genetic Algorithms

(GA) appears to be a natural choice. It is well known that
GA is asymptotically global convergent. However, it per-
forms poorly in local search from the abrupt parent-child
transitions. Also GA does not exploits the di�erentiability
of (8). In this paper, we present a hybrid optimizer that
exploits the fast local search capability of MGN and the
nonlinear global search properties of GA. Based on the ter-
minology in [15], the procedure outlined below amalagate
the fast locally converging property of MGN method with
GA's global search capability to derive a fast and almost

globally converging search procedure:

1. Supply a population Po of N individuals

2. i  1

3. evaluate elements of Pi using GN search

4. P 0
i  Selection Function(Pi)

5. P 0
i  Reproduction Function(Pi)

6. i  i + 1

7. repeat step 3 until termination

At this time of writing, it came to our attention that a
similar approach of combining gradient search and GA al-
gorithm was reported in [16]

4.. SIMULATION EXPERIMENTS

We consider a nominal 7 element uniform circular array
of �

2
inter-sensor spacing. 13 calibration sources of equal

strength are located over the �eld of view [��; �). The av-
erage sensor position error is 40% of �

2
per sensor and C is

a randomly generated full-rank matrix The standard devia-
tion of calibration source location error is 3o. In MGNGA,
uniform mutation and arithmetic crossover are used and the
selection function is based on roulette wheel.
Fig 2 shows the MUSIC spectrums for 3 uncorrelated

sources at �10�, 10� and 30�. Note MGNGA calibrated
array achieves accurate localization while the uncalibrated
and MGN calibrated array fail to localize the 3 sources.
The failure of MGN method is due to local convergence.
Fig 3 compares the convergence rate of the MGN,

MGNGA and the Genetic Algorithms. It can be clearly
seen that only MGNGA converge globally and quickly to
the global minimum. While having the fast convergence
rate, MGN fails to converge to the global solution. The

graph also shows the slow convergence of the Genetic Algo-
rithms. Although not explicitly shown here, GA converges
to the global solution asymptotically.

5.. CONCLUSIONS

In this paper we present a maximum likelihood approach
for calibrating sensor array modeling due to unknown sen-
sor location, mutual coupling and channel mismatch using
measured steering vectors of uncertain location. We formu-
late the calibration problem as a deterministic parameter
estimation problem in a maximum likelihood(ML) frame-
work. We present two optimizer to deal with the highly
nonlinear and multimodal ML cost function. Speci�cally
we introduce a hybrid of MGN and Genetic Algorithms to
solve this problem to deal with large deviations in the ini-
tial estimates. This approach provides an e�cient, fast and
globally converging search algorithm. Simulation results
show the global convergence capability of the proposed op-
timizer. They also show the usefulness and e�ectiveness of
the calibration approach in realising the potential of high
resolution array processing algorithms.
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Figure 2. MUSIC Spectrums, 13 Calibration
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