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ABSTRACT

This paper considers the use of spatio-temporal adaptive
processing (STAP) in OTHR and SAR applications to re-
move nonstationary multipath interference, known as \hot
clutter". Since the spatio-temporal properties of hot clutter
cannot be assumed constant over the coherent processing
interval, conventional adaptive routines fail to provide ef-
fective hot clutter mitigation without degrading sub-clutter
visibility for backscattered radar signals. The approach pre-
sented incorporates multiple stochastic constraints, previ-
ously investigated for spatial-only adaptive processing, to
achieve e�ective elimination of hot clutter with distortion-
less coherent processing for backscattered radar signals.

1. STOCHASTIC CONSTRAINT STAP

ALGORITHM

The stochastic constraints (SC) approach, previously intro-
duced for spatial-only adaptive processing in [1],[2],[3] and
[4] is generalised in this paper for the case of STAP. Specif-
ically, let xt(n) be an N -variate \snapshot" vector, regis-
tered at the output of an N-element antenna array at the
nth range gate in the tth repetition period. We assume that
this vector is a mixture of multimode hot clutter signals
ct(n), \ordinary" backscattered clutter yt(n), white noise
�t(n) and possibly useful signal st(n) arriving from direc-
tion �0. In accordance with STAP philosophy, Q subsequent
range cells are to be involved in joint adaptive processing.
The associated NQ-variate STAP data vector Xt(n) may
be de�ned as;

Xt(n) =

2
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xt(n)
xt(n� 1)
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xt(n�Q+ 1)

3
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Usually, linear constraints are used to protect the useful
(target) signal from distortions caused by temporal adaptiv-
ity [5]. The set of Q linear constraints typically imposed on
the NQ-variate STAP weight vectorWt(n) were introduced
in [5] as follows;

W
H
t (n)AQ(�0) = e

T
Q (2)

AQ(�0) = diag [S(�0); S(�0); ::; S(�0)] (3)

where eTQ = (1; 0; ::;0) and S(�0) is the N -variate array
\steering" vector for direction �0. If one wants to make
the output useful signal more robust against pointing errors
the corresponding constraints on derivatives might also be
imposed, for example;
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with
A2Q(�0) = diag [S(�0);S(�0); ::;S(�0)] (5)

and
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The imposed set of linear deterministic constraints may
vary and we may, without loss of generality, assume an
NQ� q matrix Aq for the case of q linear constraints.

W
H
t (n)Aq(�0) = fq (q � NQ) (7)

Since the spatial distribution of the ordinary backscat-
tered clutter signal yt(n) is relatively broad, any attempt
to �x the receiving antenna pattern along each direction of
ordinary clutter arrival is useless. On the other hand, the
ordinary backscattered clutter N -variate snapshot vector
yt(n) may usually be described by a low order scalar-type
auto-regressive (AR) model;

yt(n) +

KX
i=1

biyt�i(n) = �t(n) (8)

where bi for i = 1; ::;K � N , are the scalar AR parameters
and �t(n) is an N -variate innovative noise vector.
Now, the key point of the Stochastic Constraints (SC) ap-

proach is to protect sub-clutter visibility by approximating
the condition;

_yt(n) =W
H
t (n)Yt(n) =W

H
0 Yt(n) (9)

where W0 is some time-independent (reference) STAP
weight vector and Yt(n) is introduced similarly to Xt(n)
in Eqn.(1). If the ordinary clutter model Eqn.(8) is ac-
cepted, then the following system of constraints inEqn.(10)
and Eqn.(11) might be introduced to ensure that an arbi-
trary alternating STAP weight vector Wt(n) satis�es con-
dition Eqn.(9) exactly.
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In the STAP case, the NQ�NQ matrix ~Rcl corresponding
to the ordinary backscattered clutter is constructed as;

~Rcl = diag [Rcl;Rcl; ::;Rcl] ;Rcl = E
�
yt(n)y

H
t (n)

	
(12)

For the Kth order scalar type AR clutter model in
Eqn.(8), the system of constraints introduced in Eqn.(10)
and Eqn.(11) ensures that the beamformed scalar output

clutter signal _yt(n), processed by the alternating antenna
weight vector WH

t (n), is also a stationary Kth order AR
random process with the same temporal auto-correlation
function.
In most cases the backscattered clutter spatial covariance

matrix Rcl is well de�ned; otherwise, for a rank de�cient
spatial clutter covariance matrix, obvious alternative ap-
proaches can be adopted. In this case the non-linear con-
straint in Eqn.(11) may be shown to be non-critical [1], as

uctuations of Wt(n) in the Euclidean sense are negligible.
Moreover, even if we admit innovative noise beamformed
output power 
uctuations, they would not destroy the tem-
poral structure of the whitening �lter.
Thus, in order to simplify our problem, we may consider

only the linear stochastic constraints presented in Eqn.(10),
and formulate the problem of optimum spatio-temporal
adaptive processing (STAP) for nonstationary hot clutter
cancellation in the following way;

Find: Min
�
WH

t (n)Rhc(t)Wt(n)
	

Subject to the constraints:
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where Rhc(t) is the \slow time" dependent hot clutter
spatio-temporal covariance matrix. The solution to this
problem can be presented in closed form;

Wt(n) = R
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2. SIMULATION RESULTS

The processing e�ciency of the introduced SC STAP al-
gorithm is illustrated by computer simulation results, the
Generalised Watterson model is used with typical OTHR
parameters to simulate ionospherically propagated nonsta-
tionary hot clutter [6].

In this model the hot clutter N -variate snapshot vector
ct(n) may be represented by a superposition of P indepen-
dent hot clutter signals with each signal having L indepen-
dent modes;

ct(n) =

P�1X
p=0

L�1X
l=0

c
(pl)
t (n) (16)

where

c
(pl)
t (n) = �plSp(�l)Ep(t; �l)g

(p)
t (n� l)ej�!plt (17)

In Eqn.(17) Sp(�l) is an N � N diagonal matrix, whose
elements are de�ned by the array steering vector, formed in
accordance with the DOA of the lth mode emanating from
the pth source. Similarly, �!pl is the regular component of
the ionospheric Doppler shift, �pl is the RMS amplitude,

g
(p)
t (n) is the transmitted far-�eld waveform.
Spatial and temporal 
uctuations of the propagation me-

dia responsible for causing the hot clutter phenomenon are
both represented by the two dimensional (spatio-temporal)
N -variate complex random vector Ep(t; �l). We may sim-
plify the notation by considering E(t; �) as modelling the
spatio-temporal 
uctuations experienced by some arbitrary
nonstationary hot clutter mode.
The temporal sequence of E(t; �) is described by a multi-

variate scalar-type AR model;

E(t; �) +

IX
i=1

�i(�t)E(t� i�t; �) = ��(t) (18)

where �t is the sampling period, the scalar AR coe�cients
�i(�t) and � are de�ned according to the assumed charac-
teristics of the Doppler spectrum for the given mode 
uc-
tuations. To introduce spatial 
uctuations, the simplest
Markov model can be adopted.

�i+1(t) = r(di+1 � di)�i(t) +
p
1� |r(di+1 � di)|2 
i+1(t)

(19)
where (di+1 � di) is the antenna inter-sensor spacing,
r(di+1�di) is the spatial correlation coe�cient for the given
hot clutter mode and 
i(t) is innovative noise with the fol-
lowing correlation properties;

E
�

i(t1)


�

j (t2)
	
= �(i� j)�(t1 � t2) (20)

Figure 1 illustrates the improvement in signal-to-hot
clutter ratio achieved by the standard quasi-instantaneous
STAP algorithm (curve 1), without stochastic constraints,
relative to the classical beamformer. Curve 2 and curve 3
in �gure 1 illustrate the improvement when one and two
stochastic constraints are incorporated respectively. Note
that these curves are almost identical to curve 1.
Curve 4 in �gure 1 illustrates the improvement in signal-

to-hot clutter ratio that is achieved by the standard (time-
independent) STAP beamformer, when the applied weight
vector W (n) is derived from the hot clutter covariance ma-
trix Rhc, averaged over the whole CIT.

Rhc =
1

T

TX
t=1

Rhc(t) ; T = 256 (21)



One can see that the addition of stochastic constraints
does not signi�cantly degrade the quasi-instantaneous
(intra-sweep) hot clutter rejectability, while an attempt to
use the time invariant STAP algorithm leads to a severe
degradation in nonstationary hot clutter cancellation over
the CIT.
The Doppler spectra of the beamformed scalar backscat-

tered clutter signal for the �rst and second order AR clutter
models are shown in �gure 2 and �gure 3 respectively.
Curve 1 in Figure 2 and Figure 3 illustrates the out-

put Doppler spectra for the stochastically unconstrained
(quasi-instantaneous) STAP algorithm, curve 2 in �gure 2
and �gure 3 shows the Doppler spectra of the stochastically
constrained STAP algorithms. While curve 3 in the same
�gures illustrates the Doppler spectra when the classical
beamformer is used in the absence of hot clutter.
Clearly, the stochastic constraints have protected the

ordinary sub-clutter visibility regardless of the time-
alternating nature of the receiving antenna pattern. It is
evident that the consequent degradation in sub-clutter visi-
bility when no special means are undertaken to compensate
for the antenna pattern 
uctuations is in turn devastating.

3. FINITE SAMPLE EFFECTS

Of course, in practical applications Rhc(t) should be re-

placed by its sample estimate R̂hc(t). The number of hot
clutter samples M needed to estimate the sample covari-
ance matrix R̂hc(t) in order to achieve better than 3dB
average losses is shown in [7] to be M � 2NQ. In our ex-
ample, we note that the dimension of the STAP weight vec-
tor Wt(n) is signi�cant (NQ = 256), therefore apart from
computational problems, the number of hot clutter samples
M required for proper estimation of the quasi-instantaneous
spatio-temporal covariance matrix R̂hc(t) becomes critical.
This issue is speci�cally important in HF OTHR applica-
tions, where the number of range cells available for covari-
ance matrix estimation is limited.
However, as demonstrated in [8] and [9], by appropriate

diagonal loading this value may be reduced to M � 2Ksig,
where Ksig is the signal subspace dimension of Rhc(t), indi-
cated for our example by the eigenvalue spectrum of Rhc(0)
in �gure 4.
As shown in �gure 5, the losses corresponding to the

loaded sample matrix inverse algorithm using M = 152 are
on average the same as those expected from the standard
(unloaded) sample matrix inverse method with M = 512,
resulting in a signi�cant saving in the number of hot clutter
samples required.

4. CONCLUSION

The simulation results re
ect the e�ciency of the proposed
SC STAP algorithm and demonstrate the potential abil-
ity of this approach to cancel highly nonstationary mul-
timode interference without degrading backscattered sub-
clutter visibility.
It may be noticed that, in its presented form, the new al-

gorithm is not strictly operational, since pure backscattered
clutter samples are not always directly available, often be-
ing masked by hot clutter interference. Di�erent approaches
for the design of operational algorithms implementing the

SC STAP approach might be proposed, one of them is de-
scribed in [1] and [2].
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Figure 1. Hot Clutter Cancellation

Figure 2. First Order Clutter Model

Figure 3. Second Order Clutter Model

Figure 4. Eigenvalue Spectrum of Rhc(0)

Figure 5. Average Losses


