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ABSTRACT

We investigate DOA (direction-of-arrival) estimation for
arbitrary linear arrays, where the antenna positions may
be non-integer values in half-wavelength units. We intro-
duce an approach based on arbitrary virtual linear arrays
to resolve manifold ambiguity and estimate DOA's in the
superior case. These virtual arrays adopt the set of covari-
ance lags speci�ed by the original array and so themselves
have an incomplete set of covariance lags. A maximum en-
tropy completion algorithm for the partially-speci�ed Her-
mitian covariance matrix is proposed. This is followed by an
algorithm which searches for a �xed number of plane wave-
fronts (\generalised Pisarenko completion"). The variety
of possible virtual array geometries also permits a \ran-
domised" approach, whereby the DOA estimates are deter-
mined as the stable point of partial solutions calculated over
the set of particular virtual geometries. Numerical simula-
tions demonstrate the high e�ciency of manifold ambiguity
resolution, and a remarkable proximity to the Cramer-Rao
bound for DOA estimation.

1. INTRODUCTION

Most current research in the �eld of DOA estimation for
nonuniform linear arrays (NLA's) focuses on one speci�c
class of array, broadly known as \minimum-redundancy"
arrays [1, 2]. For such M -element arrays, the sensor posi-
tions di (i = 1; : : : ;M) can only take integer values, usually
measured in half-wavelength (�=2) units.
Let us consider the class of arbitrary-geometry NLA's, for

which the sensor positions may be non-integer values (once
again measured in half-wavelength units). Classical exam-
ples of ambiguous geometries belong to this class [3]. Obvi-
ously the non-integer inter-element spacing makes the stan-
dard augmentation approach [2] unsuitable for arbitrary-
geometry arrays.
Thus for the superior case m � M the only existing

techniques that may be applied are the multidimensional
maximum likelihood search [4] and the geometry-invariant
model-�tting approach [5]. Even for the conventional case
m < M when standard MUSIC-type algorithms can be
used, the problem of manifold ambiguity resolution is suf-
�cient motivation to search for a new ambiguity-free ap-
proach, analogous to augmentation for integer-geometry
NLA's [6].
The necessity to resolve manifold ambiguities for the con-

ventional case and the need to �nd suitable tools for dealing
with the superior case has stimulated the emergence of the
generalised augmentation approach introduced below.
Throughout this paper, we measure spatial frequency w

in units of 2d sin �=�, so that w 2 [�1;1].

�This study was partly supported by the INTAS SASPARC
grant.

2. RESULTS

We will use the four-element arbitrary-geometry NLA dis-
cussed by Proukakis and Manikas [3]

d = f0; 1:2; 3:4; 4:6g (1)

as our illustrative example. They demonstrated that if
this antenna operates in the presence of three sources with
DOA's

w3 = f0:1304; 0:5652; 0:7451g; (2)

then the MUSIC algorithm will provide �ve directions
rather than three (see Fig. 1(a), dotted line). However, the
Cramer-Rao bound in this case is �nite for any �nite N .
For example, using the input signal model with unknown
powers, N = 1000 snapshots and 20dB SNR, the 2m-variate
Fisher information matrix gives us CRB(w3) = 0:0007. The
theoretical existence of useful DOA estimates for this man-
ifold ambiguity situation encourages us to search for a new
approach to resolve manifold ambiguity.
We begin with the observation that in the limit N !1,

the sample direct data covariance (DDC) matrix R̂ provides
the asymptotically-optimal estimates for the following co-
variance lags

r� = fr0; r1:2; r2:2; r3:4; r4:6g: (3)

Thus we can construct an arbitrary virtual array with inter-
element spacings corresponding to precisely these covari-
ance lags. For example, we may introduce the array

d
0 = f0; 1:2; 2:2; 3:4; 4:6g (4)

which has one additional \virtual" element. For this virtual
array the DOA set w3 is no longer manifoldly-ambiguous,
and the MUSIC pseudo-spectrum provides the three true
directions (see Fig. 1(a), dashed line).
Obviously the di�erence set r� is incomplete for this vir-

tual array, as is the 5-variate augmented covariance matrix:

H =

2
6664

r0 r1:2 r2:2 r3:4 r4:6
r�1:2 r0 ? r2:2 r3:4
r�2:2 ? r0 r1:2 ?

r�3:4 r�2:2 r�1:2 r0 r1:2
r�4:6 r�3:4 ? r�1:2 r0

3
7775 (5)

which may be completed using the maximum-entropy (ME)
criterion. This completion method is similar to the ME
completion method proposed for partially-augmentable in-
teger arrays [7]. The ME Hermitian completion HME can
be uniquely de�ned with respect to the optimality condition
de�ned by the theorem in [8] using convex programming
techniques [9], since feasibility is guaranteed for determin-
istic covariance lags. In [8] it was proven that the inverse of



the ME-completed matrix has a zero entry in every location
corresponding to an unspeci�ed entry in the matrix H.
Fig. 1(b) shows the ME spectrum for the ME-completed

matrix HME (dotted line) compared with that of the true
covariance matrix Hexact (dashed line) corresponding to the
array geometry d0 and the source scenario w3. One can see
that ME completion in this particular example does not im-
mediately resolve the ambiguity, since both the ME spec-
trum and the MUSIC pseudo-spectrum for HME (Fig. 1(c),
dashed line) are still far from the true ones. The main rea-
son for this is that ME completion for arbitrary geometries
does not necessarily retain a plane-wave structure in the
restored wavefronts.
The following generalised Pisarenko approach is proposed

for true plane-wave completion:
Step 1: For the given incomplete covariance matrix H and
virtual geometry d, de�ne the unique ME completion HME

by the above-mentioned convex programming technique.
Step 2: Find the p.d. Toeplitz matrix corresponding to some

uniform linear array (ULA) with the ME spectrum closest
in the least-squares sense to the ME spectrum of the Her-
mitian matrix HME . Note that for a good approximation
the number of elements in this virtual ULA should exceed
the number of virtual nonuniform antenna elements. More-
over, since the ME spectrum of HME is no longer a periodic
function on w 2 [�1; 1], the inter-element spacing for the
virtual ULA should be chosen to be less than the standard
half-wavelength. The details of ME-equalisation may be
found in [10], wherein the unique solution which relies on
the Gohberg-Semencul [11] formula is derived.
Step 3: For this p.d. Toeplitz covariance matrix T corre-

sponding to the virtual ULA, �nd the �xed signal subspace
approximation TGS by alternating projections [10]. Note
that peaks in the MUSIC spectrum of TGS may arise in the
area of imaginary DOA's (j sin �j > 1); these should be elim-
inated using orthogonal projections (a constrained MUSIC
technique).
Step 4: Use the signal powers pi and DOA's �i obtained
from the matrix TGS as initial estimates in an iterative re-
�nement procedure. We derive the linear expansion for the
array manifold in the neighbourhood of these estimates to
solve the LMSE �tting problem for the speci�ed covariance
lags r�.
Fig. 1(c) (dotted line) illustrates the MUSIC pseudo-
spectrum of TGS for our example, while the �nal re�ned
DOA's obtained by LMSE �tting are absolutely accurate.
This generalised Pisarenko approach may also be used for

DOA estimation in the superior case with m = 4 sources.
Fig. 1(d) illustrates the ME spectrum of the ME-completed
matrix HME (dashed line) and the MUSIC pseudo-spectrum
of the Toeplitz approximation TGS (dotted line) for the
source scenario

w4 = f�0:23; 0:04; 0:66; 0:87g: (6)

Once again, the �nal solution obtained after DOA-�tting is
absolutely accurate.
In these simulations, we have used d=� = 0:4 for the

virtual 10-element ULA. It should be noted that this may
lead to incorrect DOA estimation for end�re situations
(sin � = �1). Moreover, the alternating projections may
occasionally lead to a set of DOA's which are su�ciently
far from the true ones to prevent successful LMSE �tting.
If we now turn our attention to a stochastic sample co-

variance matrix rather than the deterministic one, the feasi-
bility condition for the existence of the ME completion is no
longer guaranteed [8]. A simple minimal diagonal loading
is proposed to meet this condition, de�ned by the Ellipsoid
Algorithm [9].
Table 1 shows the bias and RMS error for each DOA in

a stochastic simulation of 1000 trials involving the source

true DOA (w) �0.23 0.04 0.66 0.87
bias 0.0053 0.0052 0.0062 0.0065

RMSE 0.0041 0.0042 0.0048 0.0051
total error 0.0068 0.0067 0.0079 0.0083

CRB 0.0065 0.0060 0.0073 0.0079

Table 1. Sample stochastic simulation results.

scenario w4. The sample volume is N = 1000 snapshots
and the SNR is 20dB. The above generalised Pisarenko ap-
proach achieves very good accuracy compared with the cor-
responding Cramer-Rao bounds.
Note that the geometry d0 is far from being the only way

to construct a virtual array. Treating the estimated lags in
Eqn. (3) as the consecutive inter-element lags

ri;i+1 = r�; � = 2; : : : ; 5 (7)

we are free to create sets of geometries with an arbitrary
number of elements, with the inter-element spacings drawn
from the set of admissible separations. For example, a 5-
element virtual array might be de�ned as

d
00 = f0; 1:2; 3:4; 6:8; 11:4g: (8)

By this approach, the three principal diagonals of the aug-
mented matrix H are always speci�ed, while the remain-
ing speci�ed entries have arbitrary positions in the matrix.
This matrix may once again be completed by convex pro-
gramming, and the above approach may be applied to the
augmented matrix HME to obtain the DOA estimates.
A less accurate but computationally more e�cient ap-

proach can be introduced by simply ignoring all o�-
tridiagonal speci�ed elements. By the above-mentioned the-
orem, the inverse of the ME completion (H�1

ME
) is tridiag-

onal. In fact, the tridiagonal matrix H3 is the simplest
member of a class of banded matrices with the single con-
dition r20 � jr�j

2 > 0 being necessary and su�cient for the
existence of a p.d. completion, including the ME completion
with a tridiagonal inverse [12]. Because of this property, the
ME completion can be de�ned analytically as described in
[13], and the MUSIC algorithm may be applied to the aug-
mented matrix HME to obtain the partial DOA estimates.
Of course, each particular virtual array geometry is man-

ifoldly ambiguous, and such a simpli�ed approach leads to
signi�cant errors in each set of partial DOA estimates. The
main idea is to treat the set of all possible geometries as
a random set. The di�erent geometries produce di�erent
manifold ambiguities and di�erent partial DOA errors, and
hence we expect the true DOA estimates to be the stable
points of this random set. The true DOA estimates can
now be properly inferred from the partial (sample) MUSIC
pseudo-spectra.
The simplest approach for such a combination pseudo-

spectrum f�(�) is a scaled product. This method has been
analysed for the above ambiguity resolution example involv-
ing w3. The array geometry in this case was restricted to
M� = 1+ 1

2
M(M�1) = 7 elements, and all (redundant) lags

of the original array have been used to create the random
set. One hundred trials were performed for each value of
L, and deterministic covariance lags were used. The three
absolute maxima of the function log f�(�) associated with
over the ambiguous set of �ve DOA's

w5 = f�1;�0:4492; 0:1304; 0:5652; 0:7451g: (9)

are indeed coincident with the true values with a probability
of 0.91 for only L = 8 random permutations, and probabil-
ity 0.97 for L = 13. For L > 25, all 100 trials resulted in
true DOA identi�cation.



Number of snapshots (N) 20 100 500 1000 5000 1

Probability of correct identi�cation 0.478 0.714 0.819 0.869 0.912 0.912

Table 2. Example of probability convergence for DOA estimation by association.

For stochastic covariance estimation, a relatively large
sample volume N is necessary to obtain a su�ciently high
probability of true identi�cation. Table 2 shows the prob-
ability of correct identi�cation as a function of sample vol-
ume for the manifold ambiguity example w3 with 20dB in-
put SNR for each source. Each of 1000 trials involved both
random snapshots and L = 8 random permutations used in
the averaging process. The convergence rate is quite mod-
est, which is to be expected due to the completion of the

extremely sparse matrix Ĥ3.
Thus the proposed randomised augmentation approach

demonstrates the capability of resolving manifold ambiguity
for arbitrary-geometry NLA's, obviously providing that the
Cramer-Rao bound is �nite (ie. not an inherent ambiguity).
It should be clear that in terms of DOA estimation accuracy
this approach cannot compete with our earlier rigourous
completion procedure which uses all available covariance
lags.
Note that inherent ambiguity conditions are also de-

pendent on a priori assumptions similarly to partially-
augmentable arrays [6]. For example, for the DOA set w5

the 2m-variate Fisher matrix J2m is rank de�cient, while Jm
gives the reasonable optimum accuracy CRB(w5) = 0:0531
for N = 100 and 20dB SNR. This means that in this case
when the source powers are known, the source DOA's can
be properly estimated, while the absence of a priori power
values makes the problem of DOA estimation ambiguous.

3. SUMMARY

The results obtained in this paper demonstrate that DOA
estimation problems for arbitrary linear arrays may be
treated by the described generalised augmentation ap-
proach, which relies upon associated virtual array geome-
tries.
This approach leads to the problem of optimal completion

for incomplete Hermitian matrices. For the maximum en-
tropy (ME) criterion, the unique optimal completion exists
for any feasible initial condition. When the speci�ed covari-
ance lags are precisely known (deterministic completion),
the optimum solution always exists and may be found by a
computationally-e�cient convex programming method. For
the set of sample covariance lags, the feasibility condition is
not necessarily satis�ed and an additional minimal diagonal
loading is found to meet this condition.
Unlike our earlier investigation into partially-speci�ed

Toeplitz matrix completion [7], the ME spectrum of the
ME-completed Hermitian matrix di�ers signi�cantly from
the true ME spectrum of the virtual array. For the more
general Hermitian case, ME completion does not necessarily
retain the plane-wave structure of the source �eld. There-
fore a plane-wave completion method (the generalised Pis-
arenko approach) has been described. This method begins
with the ME spectrum of the ME-completed Hermitian ma-
trix, then �nds the p.d. Toeplitz matrix (and correspond-
ing virtual uniform linear array) with the most similar ME
spectrum. Signal eigen-subspace truncation produces the
p.d. Toeplitz matrix with a �xed number of planar signals
which in most cases are located in close proximity to the
true DOA's. Finally, a LMSE adjustment re�nes these DOA
estimates to �t the speci�ed set of covariance lags.
By this approach, ambiguity resolution has been demon-

strated for manifoldly ambiguous situations; also DOA es-
timation for the superior case (of four sources and four ele-
ments) has resulted in estimation accuracy remarkably close
to the corresponding Cramer-Rao bounds.

A \randomised" augmentation approach which exploits
the fusion of the MUSIC pseudo-spectra obtained for a
\random" set of virtual array geometries has also been pro-
posed. It was shown that this method is able to provide sta-
tistically reliable ambiguity resolution with a rather modest
number of snapshots, using a simpli�ed analytic ME com-
pletion of the augmented covariance matrix truncated to
tridiagonal form.
Needless to say, ambiguity resolution is only possible for

inherently unambiguous situations where the Fisher matrix
is not rank-de�cient (ie. is positive de�nite).
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Figure 1. (a), (b) and (c) show various deterministic MUSIC and ME spectra for the three-source example;
(d) compares the initial and penultimate stages of the generalised Pisarenko approach for the four-source
example. Arrows mark the position of the true DOA's and the �nal absolutely accurate estimated DOA's.


