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ABSTRACT

We present an algorithm for direction-of-arrival track-
ing that allows operation below the ambiguity thresh-
old of the direction finding system. Using multiple tar-
get tracking techniques, the algorithm turns the most
likely directions-of-arrival of each measurement into
multiple potential tracks and then selects the true track
as that with the maximum cumulative likelihood. The
improvement offered by the algorithm, namely the ex-
tension of the ambiguity-free domain, is demonstrated
by simulated experiments.

1. INTRODUCTION

One of the parameters characterizing the performance
of every direction-finding (DF) system is the ambiguity
threshold. The ambiguity threshold is the signal-to-
noise ratio (SNR) below which, for a given number of
samples, the probability of an ambiguous direction-of-
arrival (DOA) result rises and thereby sets a limit on
the performance of the DF system.

In this paper we address the problem of tracking
a moving source using a DF system that operates be-
low the ambiguity threshold. This problem is of in-
terest since none of the existing DOA tracking algo-
rithms, [1]-[3], can handle the frequent, large and non-
random error resulting from operation below the am-
biguity threshold.

2. PROBLEM FORMULATION

For simplicity we formulate the problem for the case of
a single source. The extension to the case of multiple
sources is relatively straightforward. Suppose that a
moving source emits a narrowband signal, and that the
signal is received by an array consisting of p sensors.
For simplicity assume that both the source and the
sensors are confined to a plane and that the source is
in the far-field of the array.

Using complex envelope notation, the signals re-

ceived by the array can be expressed by

x(t) = a(6(t))s(t) + n(t) (1)

where 8(t) is the source DOA, s(¢) is its signal as re-
ceived at a reference point, n(¢) is the additive noise,
and a(@) is the steering vector towards direction 6.

Suppose that we estimate 8(t) every T seconds from
batches of m samples taken at {t;}7; from the array
output, and that the source dynamics can be modeled
by its angular position 6(¢) and angular velocity 8(¢) us-
ing the following discrete constant-velocity state-space
model:

+ = Fy(k)+w(k)

0(k) = Hy(k)+v(k) (2)
where y(k) = [G(kT),é(kT)]T is the state vector, é(k)
is the source estimated DOA, w(k) and v(k) are the
process and measurement noise, respectively, and F
and H are state transition matrix and measurement
matrix, respectively, given by

F:[éﬂ H=[1 0] (3)

Our problem can now be stated as follows: Given
the data batches, estimate the DOA track 6(t).

To solve the problem we assume that the following
conditions hold:

A1l: The change in the DOA of the source during the
batch time is negligible.

A2: The change in the DOA of the source between
consecutive batches is small. e.g. 8(kT) =~ 6((k +
1)T).

A3: The emitted signal s(t) is an unknown aend arbi-
trary waveform.

A4: The additive noise samples {n(t;)} are i.i.d
Gaussian complex random vectors with zero mean
and covariance (21, where (% is unknown.



Ab5: The process noise w(k) is Gaussian distributed
with zero mean and covariance matric
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where v 15 a known constant representing the ac-
celeration variance [4].

A6: The measurement noise v(k) is Gaussian dis-
tributed with zero mean and unknown variance

o?(k, ).

A1l is needed to insure an unbiased DOA measurement.
A2 is needed to insure proper tracking initialization.
A3 and A4 are not critical and are included to sim-
plify the optimal DOA estimator. A5 is common in
modeling of dynamic systems [4]. A6 is reasonable, re-
calling that the measurement noise is actually the DOA
estimation error.

3. SOFT-DECISION TRACKING

The common approach to DOA tracking is based on us-
ing the most likely DOA at each measurement point [1]-
[3]. This approach can be described as “hard-decision”.
In contrast to this approach, our approach is based
on regarding all the high peaks of the DOA likelihood
function, i.e., all the potential DOA’s, as potential
track points. Using data association and multiple tar-
get tracking techniques we turn these points into mul-
tiple potential tracks and then select the track with the
highest cumulative likelihood at a given time k7" as the
DOA track for that time instance. Obviously, this ap-
proach can be described as “soft-decision”. We next
present a detailed description of the different steps of
this approach.

3.1. Potential Track Points Estimation

The first step of the algorithm is the estimation of the
most likely directions-of-arrival from each batch.
From (1), assuming that each batch consists of m sam-
ples, the condense log-likelihood function is given by
the following expression [5]

(5)

where R is the sample-covariance matrix of the batch

= x(w)x" (1), (6

R-=

The peaks of L(#) represent the most likely directions-
of-arrival for the given batch. Above the ambiguity

threshold the peak corresponding to the DOA is the
highest. Yet, below the ambiguity threshold the height
of the ambiguous peaks rise and occasionally exceed the
height of the peak corresponding to the DOA. In light
of the structure of L(6) below the ambiguity threshold,
one approach for potential track points estimation is to
select all the peaks of L(f) as potential track points,
1.e. the set of points obeying

© ={6: L(#) =0, L(6) < 0}. (7)

Alternatively, to reduce the computational load, one
can limit the number of peaks to only those which are
A dB below the value of the global maximum. A is a
design parameter determined from the ambiguity struc-
ture and the field of view.

3.2. Track Formation

Track life cycle evolves in four stages: Initialization,
Confirmation, Updating and Termination. A track is
initialized whenever a potential track point is not as-
sociated with any existing track. After initialization,
the track is considered as a tentative track. Until ter-
mination, for every new set of potential track points,
the tentative and confirmed tracks are updated by the
data association algorithm, to be described later, which
associates the track points to the tracks. A tentative
track is confirmed when I points are associated to it
out of J consecutive attempts. The values of I and J
are design parameters.

A track is terminated if it is not updated during
K consecutive attempts. The value of K is a design
parameter. While an active track is updated, its past
values are used to predict, via a Kalman filter, the track
position at the next measurement point. This predicted
position in then used in the data association and in
filtering the DOA track.

The Kalman filter equations are given by [4]:

g(klk) = F(klk—1)+K(k)[6(k) -
Hy (k[k — 1)]
K(k) = P(klt—1)HT
[HP(k|k — 1)HT + o*(k,6)]7*
P(klk) = [I—K(k)H]P(k|k—1)
y(k+1[k) = Fg(klk)
P(k+1]k) = FP(k|k)FT +Q.

To carry out these recursions we must estimate the
measurement noise variance o%(k,6). To this end, note
that if the number of samples per batch, m, is large
enough, o%(k,6) can be approximated by the Cramér-
Rao bound since it is a relatively tight bound for these



ambiguity-free tracks. We denote the estimated mea-
surement variance as 5%(k, §). To initialize the Kalman
filter we use the first two track points, é(l), é(Z), as de-
scribed in [4].

3.3. Data Association

Data association amounts to the association of poten-
tial track points with the active tracks. Association
is needed because the location and the height of the
likelihood peaks can change substantially between con-
secutive DOA estimates below the ambiguity threshold.

This data association problem is simpler than the
data association problem in conventional multitarget
tracking since in this problem: (i) Tracks do not
cross, (ii) Track separation is governed by the array
beamwidth. To describe the association algorithm, let
{6;(k )}N( ) denote the newly generated set of potential
track pomts at time k7, each with its corresponding
likelihood value {L(éj(k))}N““) Also, let {T;(k)}M%)
denote the set of active tracks at time k7T, each with
its cumulative likelihood value {L,'(k)}M( )

1=

Li(k) = Li(k — 1) + L(@:(k)), (8)

, given by

1)}iﬂi(1k), given by

Bi(klk — )T, (9)

and its measurement prediction variance {s;(k )}Ai(lk),

given by

its predicted state vector {y,;(k|k —

§i(k[k —1) = [Bi(klk — 1),

si(k) = E[e*(k)] = HP;(k|k—1)HT +62(k, 6; (k|k—1)),
(10)

where F[] denotes statistical expectation and

e(k) = (k) —

Our solution to the association problem is based on
probabilistic modeling of the association process and on
using the maximum a-posteriori criterion as a selection
rule.

Let p;(k|T;(k)) denote the a-priori probability that
the ¢-th track be updated by a new track point at time
kT. Regarding the cumulative likelihood score L;(k)
as representing this a-priori probability, a natural esti-
mator for p;(k|T;(k)) is given by

L;(k)
S (k)

Hy, (k|k — 1). (11)

pi(k|Ti(k)) = (12)

Let d;;(k) denote the angular distance between
the point 8;(k) to the i-th track predicted position,

6:i(k|k — 1), and let A(k) denote the correct associa-
tion between the existing tracks {T;(k )}M(k) and the

=1

points {é](k)};\r:(’f) Conditioned on the correct associ-
ation, {d;;(k)} can be modeled as independent and zero
mean Gaussian random variables with variance s;(k).
That is, the probability density of {d;;(k)} is given by

({d,»]»(lc)}|A( ), {Ti(k )}Ma’”)

I di; (k)
e VImsilk X

Now, using Bayes’ rule, the probability of .A(k) is given
by

)- (13)

p(AR) {di; ()} AT R = ]

(4,4 )€ A(K)

! B wme). (4)

27si(k) exp( 2s;(k)

According to the maximum a-posteriori criterion, the
most probable association is the one that maximizes
(14) over all potential associations, i.e.,
M(k
max  p(i(k){di;(k)}, {T:(k) HEL),  (15)
(ALY

where {Al(k)}f:(f) denotes the set of all potential as-
sociations. Here, P(K) denotes the cardinality of the

. E)! .
set and is given by P(k) = m, with ¢(k) =
max(M (k), N(k)), p(k) = min(M (k), N(k)).
This amounts, after taking the logarithm, to the mini-
mization of the following criterion:

min D;;(k), (16)
PN G g)educh)
where
di; (k) R
Di;(k) = s:(k) +log(si(k)) —21og(pi (k| Ti(k))). (17)

Let {( Gnr ]n)}p(k) denote the set of point-track pairs
that minimize (16) and let their corresponding dis-

tances be denoted by {Di;j*( )}p(k)

If Djsj+(k) < v, where v is a threshold design pa-
rameter, the 7%x-th input point is associated to the ¢%-th
track, and its likelihood score, L(éj;), is added to the
track score. When D+ (k) > v the input point is not
likely to belong to a track, and thus is used to initiate
a new track.

The association procedure described above is ap-
plicable when the prediction covariance, s;(k), is avail-
able. Yet, newly initialized tracks, i.e. tracks with only
one point, lack this information. In order to associate a
second point to an initiated track, we compute its asso-
ciation distance by D;;(k) = dfj(k) and carry out the
association using the array beamwidth as the threshold
parameter v.
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Figure 1: Track resulting for the (a) conventional
method and (b) our algorithm using a three-element lin-
ear array with inter-elements spacing ratio of 3:4 and
aperture of 8\. Track length is 250 seconds, with DOA
estimation done every 1 second, using 100 samples of
the array output. SNR is -6dB.

3.4. Most Likely Track Selection

After the completion of the data association step, the
final step at every time instance is the selection of the
most likely track. To this end we use the cumulative
likelihood score and select the track for which this score
is maximized, i.e.

(k) = argmax(Li(k)), i=1,...,M(k). (18)
Given the most likely track, Z(k), the most likely DOA
at time k7 is given by the filtered position of the best

track, éz(k)(kﬂc)

4. SIMULATION RESULTS

To demonstrate the performance of the proposed soft-
decision algorithm, we compared it with the hard-
decision algorithm using the deterministic maximum
likelihood (DML) estimator.

Figure 1 presents a typical track estimation result
for a three-element linear array with inter-elements
spacing ratio of 3:4 and 8 aperture. The SNR is -6dB.
Note the ambiguity-rich track obtained in the conven-
tional method and the ambiguity-free track obtained in
our method. The only ambiguity errors in our method
occurred on the third and the fourth seconds, which
are within an initialization period.

Figure 2 shows the ambiguity percentage results as
a function of the SNR for m = 100 snapshots per batch
and array apertures of 2, 4), 8\. Note that while in
the conventional approach the probability of ambiguity
rises with the aperture size and is high even at very high
SNR, in our approach the probability of ambiguity is
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Figure 2: Ambiguity percentage versus SNR for a three-
element linear array with inter-elements spacing ratio
of 3:4 and aperture of (a) 2X, (b) 4X (c) 8X, and for 100
samples of the array output, using the DML algorithm
(dashed) and our soft-decision algorithm (solid).

essentially independent of the aperture and starts rising
only at -8dB, which is the no-information threshold for
this problem.
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