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ABSTRACT

A new method of nonstationary signal analysis, called

time-correlation analysis (TCA), is applied to a class

of nonstationary random signals containing time dis-

tortion. The method reveals a relationship between

the TCA summary statistics and the distortion and

leads to two nonparametric estimators for the distor-

tion function. An example is given that demonstrates

the application of the TCA method to motion com-

pensation problems in radar imaging.

1. INTRODUCTION

Time-correlation analysis (TCA) is a recently pro-

posed technique for nonstationary signal analysis and

has been successfully applied to speech processing [1],

[2]. The TCA technique is based on the principle of

parametric �ltering [3] which advocates the combi-

nation of judiciously designed �lter banks with cer-

tain output statistical parameters. With the �lter

bank, one can enhance the desirable components while

suppress the noise and interference; with the output

statistics, one can summarize the desirable compo-

nents with reduced dimensionality and statistical vari-

ability. Combining the two can result in very e�ective

signal processing methods, as was demonstrated in [1]{

[3].

The gist of the TCA method can be summarized

as follows. Suppose that Y [n] is the (discrete-time)

random signal to be analyzed and that H�(z) =P
1

m=0 h�[m] z�m is a �lter bank (or a parametric �l-

ter) index by a parameter �. Let the �ltered sig-

nal be Y�[n] := H�(z)Y [n]. The TCA method pro-

poses to use certain output statistical parameters,

such as the autocorrelation coe�cient (ACC) ��[n] :=

CorrfY�[n]; Y�[n�1]g or the zero-crossing rate (ZCR)

��[n] := PrfY�[n]Y�[n� 1] < 0g, as (time-dependent)
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summary statistics that facilitate the analysis of Y (t).

The theory behind the TCAmethod is as follows. Sup-

pose that the signal is locally stationary, then it may

be shown that ��[n] or ��[n], as a function of �, is

able to capture the complete local spectral structure

of the signal if the �lter bank is judiciously designed.

Examples of such �lter banks include the �rst-order

all-pole �lter H�(z) = 1=(1� �z�1).

In this paper, we consider a �lter bank which

consists of the repeated di�erences (RD), namely,

Hk(z) := (1 � z�1)k, (k = 0; 1; 2; � � � ). We employ

this �lter bank to analyze a class of nonstationary sig-

nals which take the form

Y (t) := X(g(t)); (1)

where X(t) is a zero-mean stationary (continuous

time) random process and g(t) is a monotone function.

This type of nonstationary processes can be found in

many applications ranging from radar, sonar, and non-

uniform sampling to environmental studies [4]{[6]. For

instance, if a radar emits a stationary harmonic signal

X(t) to illuminate a point target which moves with

an instantaneous velocity v(t) in the direction of the

radar, then, due to the Doppler e�ect, the returned

signal Y (t) becomes nonstationary and takes the form

of (1) with g(t) = t � 2(r0 �
R t
0
v(s) ds)=c, where c is

the velocity of wave propagation and r0 is the initial

distance between the radar and the moving target.

One of the most important problems in these ap-

plications is the estimation of the distortion function

g(t) based on Y (t). For example, knowledge of g(t)

helps obtain optimal (non-uniform) sampling locations

for Y (t) and facilitates the modeling of the covariance

structure of Y (t). If the distortion results from the

Doppler e�ect of a maneuvering target, as in ISAR

imaging (e.g., [7] and [8]), the inverse transform

X(t) = Y (g�1(t)) (2)

can be used for motion compensation. This method

not only reduces the spectral blurring caused by the

target maneuvering but also maintains the original fre-

quency resolution of the signal.



2. INTERPRETATIONS OF g(t)

In the following, we assume that g(t) is strictly in-

creasing with continuous derivative. We also assume

that Y (t) is observed in [0; T ] and g([0; T ]) = [0; T ].

Under these conditions, it may be shown that the rep-

resentation (1) is unique for Y (t).

The distortion function g(t) has several interesting

interpretations which can be used to derive di�erent

estimators. First, let N(t;�) be the number of zero-

crossings of Y (t) in the interval (t��; t], then

�(t) := lim
�!0

1

�
EfN(t;�)g

represents the expected instantaneous zero-crossing

rate of Y (t). It may be shown (e.g., [5] and [10]) that

�(t) = c0 _g(t);

where the constant c0 denotes the expected ZCR of

X(t). Therefore, one can regard _g(t) as the instanta-

neous ZCR ination factor.

Suppose that X(t) is a band-limited process with

bandwidth 
0. Then, according to the Shannon sam-

pling theorem, X(t) can be reconstructed (in mean

square) from the samples X(n�) with � := �=
0 be-

ing the critical sampling interval. It may be shown

from (1) that the corresponding critical sampling

points for Y (t) are determined by tn := g�1(n�).

Since �n := tn � tn�1 is the local critical sampling

interval of Y (t), one may regard �=�n as the local

bandwidth of Y (t). It is easy to see that

�

�n

= 
0
g(tn)� g(tn�1)

tn � tn�1

:
= 
0 _g(tn):

Therefore, one can regard


(t) := 
0 _g(t)

as the instantaneous bandwidth of Y (t) and _g(t) as

the instantaneous bandwidth ination factor.

3. ESTIMATION OF g(t)

For any unknown constant a 6= 0, if �(t) := a _g(t) is

estimated from Y (t), then the estimation of g(t) can

be easily accomplished by using the transformation

g(t) = T

R t
0
�(s) ds

R
T

0
�(s) ds

:

In other words, it su�ces to estimate the function _g(t)

up to an arbitrary nonzero constant. To this end, we

consider a nonparametric approach based on the TCA

technique. The nonparametric approach has the ad-

vantage of being model-independent and thus has the

potential of providing more robust estimators in situa-

tions where parametric models of g(t) are inadequate.

Our nonparametric estimators of g(t) are derived

from the RD-based TCA technique coupled with the

output zero-crossing rates. More precisely, let Y (k)(t),

(k = 0; 1; � � � ), denote the kth derivative of Y (t), which

can be approximated by the RD �lter output Yk[n] :=

Hk(z)Y [n], where Y [n] := Y0[n] := Y (n�) are the

discrete samples of Y (t). Furthermore, let Nk(t;�)

denote the number of zero-crossings of Y (k)(t) in the

interval (t��; t] and let

�k(t) := lim
�!0

1

�
EfNk(t;�)g

be the expected instantaneous ZCR of Y (k)(t). In this

case, the TCA method utilizes the �k(t) as summary

statistics for the analysis of Y (t). Under suitable con-

ditions [9], there is a one-to-one correspondence be-

tween the ZCR and the ACC of Y (k)(t).

For the estimation of g(t) in particular, we note that

�0(t) = c0 _g(t):

Therefore, if � is su�ciently small so that Z0[n] :=

N0(n�;�) become Bernoulli (0-1) random variables

with Z0[n] = 1 if Y0[n]Y0[n � 1] < 0 and Z0[n] = 0

otherwise, then one can write

Z0[n] = �0(n�) + �0[n]; (3)

where

�0(t) := EfN0(t;�)g = � c0 _g(t) (4)

is a deterministic function and �0[n] is the (zero-mean)

additive noise. Since a constant factor does not a�ect

the estimation of g(t), our task thus becomes the es-

timation of the mean function �0(t) from the binary

observations Z0[n]. This can be accomplished with the

help of various nonparametric smoothing techniques in

statistics.

Our second estimator of g(t) is based on the obser-

vation that

_Y (t) = _g(t) _X(g(t)):

Since _g(t) 6= 0 for all t, the ZCR of _Y (t) = Y (1)(t) thus

coincides with the ZCR of _X(g(t)). By comparing this

with the relationship between the ZCR of X(g(t)) and

g(t), it is not surprising to see that

�1(t) = c1 _g(t);



where the constant c1 denotes the expected ZCR of

the stationary process _X(t). Therefore, one can write,

for su�ciently small �,

Z1[n] = �1(n�) + �1[n]; (5)

where

�1(t) := EfN1(t;�)g = � c1 _g(t): (6)

is a deterministic function and �1[n] is the zero-mean

additive noise. Again, as in the �rst estimation

method, smoothing techniques can be employed to ob-

tain nonparametric estimators of the mean function

�1(t) from the binary observations Z1[n].

For the regression problems in (3) and (5), the

signal-to-noise ratio (SNR) may be de�ned as

SNRi :=
�2
i
(n�)

Varf�i[n]g
=

�i(n�)

1� �i(n�)

for i = 0; 1. Clearly, the SNR increases with the in-

crease of �i(t) 2 (0; 1). Further, it may be shown by

following the lines of [11] that c0 � c1. Therefore the

second estimator has the potential of achieving bet-

ter performance than the �rst method. This is par-

ticularly true if X(t) is dominated by a strong low

frequency component. In fact, as a result of the RD

highpass �ltering, c1 can be much greater than c0 so

that the \signal" is much more enhanced in Z1[n].

4. APPLICATION IN RADAR IMAGING

In ISAR (inverse synthetic aperture radar) imaging, it

is desirable to construct clear images of a moving tar-

get using the radar signals reected from the target

[7], [8]. Conventional ISAR imaging is done by using

the Fourier transform of the returned signals. How-

ever, due to the possibly complicated maneuvering of

the target within the imaging time duration, the re-

turned radar signals may be distorted by the Doppler

e�ect, so that the resulting radar image can become

severely blurred if the distortion is not appropriately

compensated for.

A simple approach to handling the distortion is to

reduce the imaging time duration (e.g., STFT) [8]. A

more sophisticated approach calls for the estimation of

the distortion followed by suitable transformations to

eliminate the blurring. We take the second approach

because it preserves the frequency resolution of the

original radar signals.

Shown in Fig. 1(a) are the real and imaginary parts

of a complex-valued signal representing the time his-

tory of a range pro�le of a maneuvering target (same

data as used in [8]). Without correcting the Doppler

distortion which is clearly present in the signal, the

Fourier spectrum, shown in the left panel of Fig. 1(e),

exhibits blurred peaks. The right panel of Fig. 1(e)

shows the Fourier spectrum after the distortion cor-

rection (Fig. 1(d)) using a TCA estimator obtained

by smoothing the binary zero-crossing process Z1[n]

(Fig. 1(b)). The smoothing is carried out indepen-

dently for the real and imaginary parts and the re-

sults are combined by a simple average to yield the

TCA estimators shown in Fig. 1(c). Fig. 1(f) presents

the results obtained by smoothing Z0[n]. As we can

see, both methods dramatically improve the sharpness

of the spectral peaks, but the estimator obtained from

Z1[n] performs slightly better because the RD �ltering

reduces the dominance of the low frequency compo-

nent in the signal and thus improves the SNR in the

binary process Z1[n].
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Figure 1: An Example of Correcting Doppler Distortions by the TCA Method. (a) The real and imaginary parts of a

distorted signal. (b) The estimated mean function obtained by smoothing the binary process Z1[n] (represented by

the dots) for the real (left) and imaginary (right) parts of the signal. (c) The nonparametric estimate of _g(t) (left)

and of g(t) (right). (d) The real and imaginary parts of the distortion-corrected signal. (e) The Fourier spectrum

of the distorted signal (left) and of the distortion-corrected signal (right) { both spectral peaks are sharpened by

the distortion-correction procedure. (f) The nonparametric estimate of g(t) (left) obtained by smoothing Z0[n]

and the Fourier spectrum of the resulting distortion-corrected signal (right).


